Solveeit Logo

Question

Physics Question on simple harmonic motion

If the differential equation for a simple harmonic motion is d2ydt2+2y=0,\frac{d^{2}y}{dt^{2}}+2y=0, the time-period of the motion is

A

π2\pi\sqrt{2} sec

B

2sπ\frac{\sqrt{2}s}{\pi} sec

C

π2\frac{\pi}{\sqrt{2}} sec

D

2π2\pi sec

Answer

π2\pi\sqrt{2} sec

Explanation

Solution

The differential equation of simple harmonic motion is
d2ydt2+2y=0\frac{d^{2}y}{dt^{2}}+2y=0 or d2ydt2=2y...(i)\frac{d^{2}y}{dt^{2}}=-2y\,...\left(i\right)
Standard equation of simple harmonic motion is
d2ydt2=ω2y...(ii)\frac{d^{2}y}{dt^{2}}=-\omega^{2}y\,...\left(ii\right)
Comparing e (i)\left(i\right) and (ii)\left(ii\right),
ω2=2\omega^{2}=2 or ω=2\omega=\sqrt{2}
As we know, ω=2πT\omega=\frac{2\pi}{T}
\therefore Time period, T=2πω=2π2=π2secT=\frac{2\pi}{\omega}=\frac{2\pi}{\sqrt{2}}=\pi\sqrt{2}\,sec