Solveeit Logo

Question

Physics Question on Oscillations

If the differential equation for a simple harmonic motion is d2ydt2+2y=0\frac{d^2 y}{dt^2} + 2 y = 0, the time-period of the motion is

A

π2s\pi \sqrt{2} s

B

2πs\frac{\sqrt{2}}{\pi} s

C

π2s\frac{\pi}{\sqrt{2}} s

D

2πs2 \pi s

Answer

π2s\pi \sqrt{2} s

Explanation

Solution

Given,
d2ydt2+2y=0...(i)\frac{d^{2} y}{d t^{2}}+2 y=0\,...(i)
But, we know that
d2ydt2+ω2Y=0...(ii)\frac{d^{2} y}{d t^{2}}+\omega^{2} Y=0\,...(ii)
Comparing both equation, we get
ω2=2\omega^{2} =2
ω=2\Rightarrow \omega =\sqrt{2}
The periodic time
T=2πω=2π2T=\frac{2 \pi}{\omega}=\frac{2 \pi}{\sqrt{2}}
=2π=π2s=\sqrt{2} \pi=\pi \sqrt{2} \,s