Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If the difference between the roots of x2+axb=0{{x}^{2}}+ax-b=0 is equal to the difference between the roots of x2px+q=0,{{x}^{2}}-px+q=0, then a2p2{{a}^{2}}-{{p}^{2}} in terms of bb and qq is

A

4(b+q)-4(b+q)

B

4(b+q)4(b+q)

C

4(bq)4(b-q)

D

4(qb)4(q-b)

Answer

4(b+q)-4(b+q)

Explanation

Solution

Let α,β\alpha ,\beta are the roots of the equation
x2+axb=0{{x}^{2}}+ax-b=0
\therefore α+β=a,αβ=b\alpha +\beta =-a,\,\,\alpha \beta =-b
and γ,δ\gamma ,\delta
are the roots of the equation
x2px+q=0{{x}^{2}}-px+q=0
\therefore γ+δ=p,γδ=q\gamma +\delta =p,\,\gamma \delta =q
Given, αβ=γδ\alpha -\beta =\gamma -\delta
\Rightarrow (αβ)2=(γδ)2{{(\alpha -\beta )}^{2}}={{(\gamma -\delta )}^{2}}
\Rightarrow (α+β)24αβ=(γ+δ)24γδ{{(\alpha +\beta )}^{2}}-4\alpha \beta ={{(\gamma +\delta )}^{2}}-4\gamma \delta
\Rightarrow a2+4b=p24q{{a}^{2}}+4b={{p}^{2}}-4q
\Rightarrow a2p2=4(b+q){{a}^{2}}-{{p}^{2}}=-4(b+q)