Solveeit Logo

Question

Question: If the difference between the corresponding roots of \(x^{2} + ax + b = 0\) and \(x^{2} + bx + a = ...

If the difference between the corresponding roots of

x2+ax+b=0x^{2} + ax + b = 0 and x2+bx+a=0x^{2} + bx + a = 0 is same and aba \neq b, then

A

a+b+4=0a + b + 4 = 0

B

a+b4=0a + b - 4 = 0

C

ab4=0a - b - 4 = 0

D

ab+4=0a - b + 4 = 0

Answer

a+b+4=0a + b + 4 = 0

Explanation

Solution

α+β=a\alpha + \beta = - a, αβ=b\alpha\beta = bαβ=a24b\alpha - \beta = \sqrt{a^{2} - 4b} and γ+δ=b\gamma + \delta = - b, γδ=a\gamma\delta = aγδ=b24a\gamma - \delta = \sqrt{b^{2} - 4a}

According to question, αβ=γδ\alpha - \beta = \gamma - \deltaa24b=b24a\sqrt{a^{2} - 4b} = \sqrt{b^{2} - 4a}a+b+4=0a + b + 4 = 0