Solveeit Logo

Question

Question: If the diagonals of the quadrilateral formed by the lines px + qy + r = 0, p'x + q'y + r = 0, px + ...

If the diagonals of the quadrilateral formed by the lines

px + qy + r = 0, p'x + q'y + r = 0, px + qy + r' = 0,p'x + q'y + r' = 0 are at right angles, then-

A

p2 + r2 = p'2 + r'2

B

pp' + qq' = 0

C

p2 + q2 = p'2 + q'2

D

q2 + r2 = q'2 + r'2

Answer

p2 + q2 = p'2 + q'2

Explanation

Solution

The quadrilateral is obviously a parallelogram and if the diagonals are at right angles, it must be a rhombus. Hence the distance between the pairs of opposite sides must be the same.

(i.e.) rrp2+q2=rrp2+q2\left| \frac { \mathrm { r } - \mathrm { r } ^ { \prime } } { \sqrt { \mathrm { p } ^ { 2 } + \mathrm { q } ^ { 2 } } } \right| = \left| - \frac { \mathrm { r } - \mathrm { r } ^ { \prime } } { \sqrt { \mathrm { p } ^ { \prime 2 } + \mathrm { q } ^ { \prime 2 } } } \right|

Ž p2 + q2 =