Solveeit Logo

Question

Mathematics Question on Determinants

If the determinant of the adjoint of a (real) matrix of order 33 is 2525, then the determinant of the inverse of the matrix is

A

0.20.2

B

±\pm 5

C

16255\frac{1}{\sqrt[5]{625}}

D

±0.2\pm 0.2

Answer

±0.2\pm 0.2

Explanation

Solution

Given , the determinant of the adjoint of a (real) matrix of order 33 is 2525.
i.e., | adj A=25...(i) A|=25\,\,\,\,\,\,...(i)
We know that,
| adj A=An1( A|=|A|^{n-1} \,\,\,\,\, ( here, n=3)\left.n=3\right)
A31=A2=25[\Rightarrow |A|^{3-1}=|A|^{2}=25 \,\,\,\,\,[ from E (i) ]]
A=±5\Rightarrow |A|=\pm 5
A1=A1=1A=±15=±0.2\therefore \left|A^{-1}\right|=|A|^{-1}=\frac{1}{|A|}=\pm \frac{1}{5}=\pm 0.2\,\,\,\,(by property)