Question
Question: If the determinant \(\left| \begin{matrix} \cos 2x & \sin^{2}x & \cos 4x \\ \sin^{2}x & \cos 2x & \c...
If the determinant cos2xsin2xcos4xsin2xcos2xcos2xcos4xcos2xcos2x is expended in power of sin x. Then the constant term in the expansion is –
A
1
B
2
C
–1
D
None of these
Answer
–1
Explanation
Solution
∆(x) = 1−2sin2xsin2x1−8sin2x+8sin4xsin2x1−2sin2x1−sin2x1−8sin2x+8sin4x1−sin2x1−2sin2x
Put x = 0
∆(0) = 101011111 = –1