Solveeit Logo

Question

Question: If the determinant \(\left| \begin{matrix} \cos 2x & \sin^{2}x & \cos 4x \\ \sin^{2}x & \cos 2x & \c...

If the determinant cos2xsin2xcos4xsin2xcos2xcos2xcos4xcos2xcos2x\left| \begin{matrix} \cos 2x & \sin^{2}x & \cos 4x \\ \sin^{2}x & \cos 2x & \cos^{2}x \\ \cos 4x & \cos^{2}x & \cos 2x \end{matrix} \right| is expended in power of sin x. Then the constant term in the expansion is –

A

1

B

2

C

–1

D

None of these

Answer

–1

Explanation

Solution

∆(x) = 12sin2xsin2x18sin2x+8sin4xsin2x12sin2x1sin2x18sin2x+8sin4x1sin2x12sin2x\left| \begin{matrix} 1 - 2\sin^{2}x & \sin^{2}x & 1 - 8\sin^{2}x + 8\sin^{4}x \\ \sin^{2}x & 1 - 2\sin^{2}x & 1 - \sin^{2}x \\ 1 - 8\sin^{2}x + 8\sin^{4}x & 1 - \sin^{2}x & 1 - 2\sin^{2}x \end{matrix} \right|

Put x = 0

∆(0) = 101011111\left| \begin{matrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{matrix} \right| = –1