Solveeit Logo

Question

Question: If the determinant \( \left| \begin{matrix} \cos 2x & {{\sin }^{2}}x & \cos 4x \\\ {{\sin ...

If the determinant cos2xsin2xcos4x sin2xcos2xcos2x cos4xcos2xcos2x \left| \begin{matrix} \cos 2x & {{\sin }^{2}}x & \cos 4x \\\ {{\sin }^{2}}x & \cos 2x & {{\cos }^{2}}x \\\ \cos 4x & {{\cos }^{2}}x & \cos 2x \\\ \end{matrix} \right| is expanded in the powers of sinx\sin x then the negative of the constant term in the expansion is___________.
(A) 1
(B) -1
(C) -2
(D) 0

Explanation

Solution

For answering this question we will expand this determinant and simplify it by using the below formula
cos2x=12sin2x cos2x=1sin2x \begin{aligned} & \cos 2x=1-2{{\sin }^{2}}x \\\ & {{\cos }^{2}}x=1-{{\sin }^{2}}x \\\ \end{aligned}
From these two we can get
cos4x=2(12sin2x)1 cos4x=(1sin2x)2 \begin{aligned} & \cos 4x=2\left( 1-2{{\sin }^{2}}x \right)-1 \\\ & {{\cos }^{4}}x={{\left( 1-{{\sin }^{2}}x \right)}^{2}} \\\ \end{aligned}
The minor of aij{{a}_{ij}} is represented by Mij{{M}_{ij}} and for example for any 3×33\times 3 matrix the minor of a21{{a}_{21}} is represented by M21{{M}_{21}} and is given by a12a13 a32a23 \left| \begin{matrix} {{a}_{12}} & {{a}_{13}} \\\ {{a}_{32}} & {{a}_{23}} \\\ \end{matrix} \right| . The cofactor of aij{{a}_{ij}} is represented by Cij{{C}_{ij}} is given by Cij=(1)i+jMij{{C}_{ij}}={{\left( -1 \right)}^{i+j}}{{M}_{ij}} .The determinant of any 3×33\times 3 matrix is given by =a11C11+a12C12+a13C13.={{a}_{11}}{{C}_{11}}+{{a}_{12}}{{C}_{12}}+{{a}_{13}}{{C}_{13}}.

Complete step-by-step answer:
Let us get started by expanding the determinant
cos2xsin2xcos4x sin2xcos2xcos2x cos4xcos2xcos2x =cos2x(cos22xcos4x)sin2x(sinx2cos2xcos2xcos4x)+cos4x(sin2xcos2xcos2xcos4x)\left| \begin{matrix} \cos 2x & {{\sin }^{2}}x & \cos 4x \\\ {{\sin }^{2}}x & \cos 2x & {{\cos }^{2}}x \\\ \cos 4x & {{\cos }^{2}}x & \cos 2x \\\ \end{matrix} \right|=\cos 2x\left( {{\cos }^{2}}2x-{{\cos }^{4}}x \right)-{{\sin }^{2}}x\left( \sin {{x}^{2}}\cos 2x-{{\cos }^{2}}x\cos 4x \right)+\cos 4x\left( {{\sin }^{2}}x{{\cos }^{2}}x-\cos 2x\cos 4x \right) cos32xcos2xcos4xsin4xcos2x+sin2xcos2xcos4x+cos4xsin2xcos2xcos24xcos2x\Rightarrow {{\cos }^{3}}2x-\cos 2x{{\cos }^{4}}x-{{\sin }^{4}}x\cos 2x+{{\sin }^{2}}x{{\cos }^{2}}x\cos 4x+\cos 4x{{\sin }^{2}}x{{\cos }^{2}}x-{{\cos }^{2}}4x\cos 2x
By using cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x identity, we will get
(12sin2x)3(12sin2x)cos4xsin4x(12sin2x)+sin2xcos2xcos4x+cos4xsin2xcos2x cos24x(12sin2x) \begin{aligned} & \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\cos }^{4}}x-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+{{\sin }^{2}}x{{\cos }^{2}}x\cos 4x+\cos 4x{{\sin }^{2}}x{{\cos }^{2}}x- \\\ & {{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\\ \end{aligned}
By using cos2x=1sin2x{{\cos }^{2}}x=1-{{\sin }^{2}}x identity, we will get
(12sin2x)3(12sin2x)cos4xsin4x(12sin2x)+sin2x(1sin2x)cos4x+ cos4xsin2x(1sin2x)cos24x(12sin2x) \begin{aligned} & \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\cos }^{4}}x-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\cos 4x+ \\\ & \cos 4x{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)-{{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\\ \end{aligned}
Adding up similar terms, we will get
(12sin2x)3(12sin2x)cos4xsin4x(12sin2x)+2sin2x(1sin2x)cos4x cos24x(12sin2x) \begin{aligned} & \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\cos }^{4}}x-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\cos 4x \\\ & -{{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\\ \end{aligned}
By using cos4x=(1sin2x)2{{\cos }^{4}}x={{\left( 1-{{\sin }^{2}}x \right)}^{2}} , we will get
(12sin2x)3(12sin2x)(1sin2x)2sin4x(12sin2x)+2sin2x(1sin2x)cos4x cos24x(12sin2x) \begin{aligned} & \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\left( 1-{{\sin }^{2}}x \right)}^{2}}-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\cos 4x \\\ & -{{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\\ \end{aligned}
By using cos4x=2(12sin2x)1\cos 4x=2\left( 1-2{{\sin }^{2}}x \right)-1 , we will get
(12sin2x)3(12sin2x)(1sin2x)2sin4x(12sin2x)+2sin2x(1sin2x)(2(12sin2x)1) (2(12sin2x)1)2(12sin2x) \begin{aligned} & \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\left( 1-{{\sin }^{2}}x \right)}^{2}}-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\left( 2\left( 1-2{{\sin }^{2}}x \right)-1 \right) \\\ & -{{\left( 2\left( 1-2{{\sin }^{2}}x \right)-1 \right)}^{2}}\left( 1-2{{\sin }^{2}}x \right) \\\ \end{aligned}
By simplifying 2(12sin2x)1=14sin2x2\left( 1-2{{\sin }^{2}}x \right)-1=1-4{{\sin }^{2}}x , we will get
(12sin2x)3(12sin2x)(1sin2x)2sin4x(12sin2x)+2sin2x(1sin2x)(14sin2x) (14sin2x)2(12sin2x) \begin{aligned} & \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\left( 1-{{\sin }^{2}}x \right)}^{2}}-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\left( 1-4{{\sin }^{2}}x \right) \\\ & -{{\left( 1-4{{\sin }^{2}}x \right)}^{2}}\left( 1-2{{\sin }^{2}}x \right) \\\ \end{aligned}
Here if we observe that now we have all terms as the powers of sinx\sin x now we need to find the value of the constant term in the expansion for that if we assume x=0x=0 then all other terms containing the powers of sinx\sin x will become zero.
Let us do that
We know that sin0=0\sin 0=0 so by substituting that we will get
(10)3(10)(10)20(10)+2.0(10)(10)(10)2(10) 111 1 \begin{aligned} & \Rightarrow {{\left( 1-0 \right)}^{3}}-\left( 1-0 \right){{\left( 1-0 \right)}^{2}}-0\left( 1-0 \right)+2.0\left( 1-0 \right)\left( 1-0 \right)-{{\left( 1-0 \right)}^{2}}\left( 1-0 \right) \\\ & \Rightarrow 1-1-1 \\\ & \Rightarrow -1 \\\ \end{aligned}
Here we need a negative of the constant term of the expansion of the determinant that is 1.

So, the correct answer is “Option A”.

Note: We can also answer this question in other way as it is given that the determinant is expanded in the powers of sinx\sin x we can assume that expansion to be
cos2xsin2xcos4x sin2xcos2xcos2x cos4xcos2xcos2x =a0+a1sinx+a2sin2x+..........and so on\left| \begin{matrix} \cos 2x & {{\sin }^{2}}x & \cos 4x \\\ {{\sin }^{2}}x & \cos 2x & {{\cos }^{2}}x \\\ \cos 4x & {{\cos }^{2}}x & \cos 2x \\\ \end{matrix} \right|={{a}_{0}}+{{a}_{1}}\sin x+{{a}_{2}}{{\sin }^{2}}x+..........and\text{ so on}
Here if we observe this now we have all terms as the powers of sinx\sin x Now we need to find the value of the constant term in the expansion for that if we assume x=0x=0 then all other terms containing the powers of sinx\sin x will become zero. Let us apply the value of xx in the determinant.
cos0sin20cos0 sin20cos0cos20 cos0cos20cos0 =a0\left| \begin{matrix} \cos 0 & {{\sin }^{2}}0 & \cos 0 \\\ {{\sin }^{2}}0 & \cos 0 & {{\cos }^{2}}0 \\\ \cos 0 & {{\cos }^{2}}0 & \cos 0 \\\ \end{matrix} \right|={{a}_{0}}
Since we know that sin0=0\sin 0=0 and cos0=1\cos 0=1 we will have
101 011 111 =a0\left| \begin{matrix} 1 & 0 & 1 \\\ 0 & 1 & 1 \\\ 1 & 1 & 1 \\\ \end{matrix} \right|={{a}_{0}}
By expanding the above determinant we will have
101 011 111 =a0 1(11)0(01)+1(01)=a0 1=a0 \begin{aligned} & \left| \begin{matrix} 1 & 0 & 1 \\\ 0 & 1 & 1 \\\ 1 & 1 & 1 \\\ \end{matrix} \right|={{a}_{0}} \\\ & \Rightarrow 1\left( 1-1 \right)-0\left( 0-1 \right)+1\left( 0-1 \right)={{a}_{0}} \\\ & \Rightarrow -1={{a}_{0}} \\\ \end{aligned}
As we need the negative of the constant term that is negative of a0{{a}_{0}} that is 1.
Hence we end up with a conclusion saying that option (A) is correct.