Solveeit Logo

Question

Question: If the derivative of f(x) w.r.t x is \(\frac{\frac{1}{2}–\sin^{2}x}{f(x)}\) then period of f(x) is-...

If the derivative of f(x) w.r.t x is 12sin2xf(x)\frac{\frac{1}{2}–\sin^{2}x}{f(x)} then period of f(x) is-

A

2p

B

p

C

p/2

D

None

Answer

p

Explanation

Solution

f ¢(x) = 12sin2xf(x)\frac{\frac{1}{2}–\sin^{2}x}{f(x)}̃ f(x) f ¢ (x) = 12\frac{1}{2} – sin2x

̃ cosec2xdx=dt\Rightarrow - \operatorname { cosec } ^ { 2 } x d x = d t

̃ =dtt2=1t+c= \int \frac { - d t } { t ^ { 2 } } = \frac { 1 } { t } + c = x2\frac{x}{2}(x2sin2x4)+C\left( \frac{x}{2}–\frac{\sin 2x}{4} \right) + C

(f(x))2 = sin2x2\frac{\sin 2x}{2} + C, f(x) = sin2x2+C\sqrt{\frac{|\sin 2x|}{2} + C} period of f(x) is 2π2\frac{2\pi}{2} = p