Solveeit Logo

Question

Mathematics Question on Tangents and Normals

If the curves 2x=y22x = y^2 and 2xy=K2xy = K intersect perpendicularly, then the value of K2K^2 is

A

44

B

222\sqrt{2}

C

22

D

88

Answer

88

Explanation

Solution

2x=y2(1)2 x=y^{2} \ldots(1)
2xy=K(2)2 x y=K \ldots(2)
Solving (1)(1) and (2)(2), we get
(x,y)=(K(2/3)/2,K(1/3))( x , y )=\left( K ^{(2 / 3)} / 2, K ^{(1 / 3)}\right)
Differentiating (1)(1) and (2)(2) w.r.t. xx
m1=dy/dx=1/y(3)m _{1}= dy / dx =1 / y \ldots(3)
m2=dy/dx=y/x(4)m_{2}=d y / d x=-y / x \ldots(4)
Both curves intersect each other perpendicularly
m1m2=1\therefore m _{1} m _{2}=-1
1/x=1\Rightarrow-1 / x=-1
x=1\Rightarrow x =1
K(2/3)=2\Rightarrow K ^{(2 / 3)}=2
K2=8\Rightarrow K ^{2}=8