Solveeit Logo

Question

Mathematics Question on applications of integrals

If the curve y=ax2+bx+c,xR,y=a x^{2}+b x+c, x \in R, passes through the point (1,2) and the tangent line to this curve at origin is y=x,y = x , then the possible values of a,b,ca , b , c are :

A

a=12,b=12,c=1a =\frac{1}{2}, b =\frac{1}{2}, c =1

B

a=1,b=0,c=1a =1, b =0, c =1

C

a=1,b=1,c=0a =1, b =1, c =0

D

a=1,b=1,c=1a=-1, b=1, c=1

Answer

a=1,b=1,c=0a =1, b =1, c =0

Explanation

Solution

a+b+c=2a+b+c=2...(1) and dydx(0,0)=1\left.\frac{ dy }{ dx }\right|_{(0,0)}=1 2ax+b(0,0)=12 ax +\left. b \right|_{(0,0)}=1 b=1b =1 Curve passes through origin So, c=0c=0 and a=1a=1