Solveeit Logo

Question

Question: If the current density as a function of distance ‘r’ from the axis of a radially symmetrical paralle...

If the current density as a function of distance ‘r’ from the axis of a radially symmetrical parallel stream of electrons is given as j(r)=xb(α+1)μ0r(α1)j(r) = \dfrac{{xb(\alpha + 1)}}{{{\mu _0}}}{r^{(\alpha - 1)}} if the magnetic induction inside the stream varies as B=brαB = b{r^\alpha }, where bb and α\alpha are positive constants. Find xx

Explanation

Solution

Hint
This question is based on the concept of the current density of the parallel stream of electrons and related magnetic induction. We can use the ampere's circuital law and on equating both the sides we will get the value of xx
In this solution we will be using the following formula,
Bdl=μoI\Rightarrow \oint {\vec B \cdot d\vec l} = {\mu _o}I
where B\vec B is the magnetic field, μo{\mu _o} is the permittivity and II is the current

Complete step by step answer
In the question we are given the current density. Let us consider the electrons are flowing in a stream of radius rr. We consider a thin ring on the surface area of the stream having radius rr'. So the area of this ring is,
A=2πrdr\Rightarrow A = 2\pi r'dr'
So the current in this ring is the product of the current density and the area,
dI=j(r)2πrdr\therefore dI = j\left( {r'} \right)2\pi r'dr'
So for the whole current we integrate in the range from 0 to rr. Hence we get,
I=dI\Rightarrow I = \int {dI}
Substituting the values and the limit we have,
I=0rj(r)2πrdr\Rightarrow I = \int\limits_0^r {j\left( {r'} \right)} 2\pi r'dr'
In the question we are given
j(r)=xb(α+1)μ0r(α1)\Rightarrow j(r) = \dfrac{{xb(\alpha + 1)}}{{{\mu _0}}}{r^{(\alpha - 1)}}
Substituting in the equation we get
I=0rxb(α+1)μ0r(α1)2πrdr\Rightarrow I = \int\limits_0^r {\dfrac{{xb(\alpha + 1)}}{{{\mu _0}}}{{r'}^{(\alpha - 1)}}2\pi r'dr'}
Taking all the constants out of the integration
I=xb(α+1)2πμ00rr(α1)rdr\Rightarrow I = \dfrac{{xb(\alpha + 1)2\pi }}{{{\mu _0}}}\int\limits_0^r {{{r'}^{(\alpha - 1)}}r'dr'}
Therefore we have,
I=xb(α+1)2πμ00rrαdr\Rightarrow I = \dfrac{{xb(\alpha + 1)2\pi }}{{{\mu _0}}}\int\limits_0^r {{{r'}^\alpha }dr'}
On integrating we get,
I=xb(α+1)2πμ0r(α+1)(α+1)0r\Rightarrow I = \dfrac{{xb(\alpha + 1)2\pi }}{{{\mu _0}}}\left. {\dfrac{{{{r'}^{\left( {\alpha + 1} \right)}}}}{{\left( {\alpha + 1} \right)}}} \right|_0^r
On substituting the limits,
I=xb(α+1)2πμ0(α+1)[r(α+1)]\Rightarrow I = \dfrac{{xb(\alpha + 1)2\pi }}{{{\mu _0}\left( {\alpha + 1} \right)}}\left[ {{r^{\left( {\alpha + 1} \right)}}} \right]
On cancelling (α+1)\left( {\alpha + 1} \right) from numerator and denominator,
I=xb2πμ0[r(α+1)]\Rightarrow I = \dfrac{{xb2\pi }}{{{\mu _0}}}\left[ {{r^{\left( {\alpha + 1} \right)}}} \right]
Now we are given B=brαB = b{r^\alpha }
So the integration Bdl\oint {\vec B \cdot d\vec l} gives,
Bdl=brαdl\Rightarrow \oint {\vec B \cdot d\vec l} = \oint {b{r^\alpha }d\vec l}
Taking the constants out and integrating we get,
Bdl=brαdl\Rightarrow \oint {\vec B \cdot d\vec l} = b{r^\alpha }\oint {d\vec l}
The line integration gives,
Bdl=brα2πr\Rightarrow \oint {\vec B \cdot d\vec l} = b{r^\alpha }2\pi r
From the ampere’s circuital law,
Bdl=μoI\Rightarrow \oint {\vec B \cdot d\vec l} = {\mu _o}I
So substituting the values we have,
brα2πr=μ0xb2πμ0[r(α+1)]\Rightarrow b{r^\alpha }2\pi r = {\mu _0}\dfrac{{xb2\pi }}{{{\mu _0}}}\left[ {{r^{\left( {\alpha + 1} \right)}}} \right]
Cancelling the same terms from both sides,
rαr=x[r(α+1)]\Rightarrow {r^\alpha }r = x\left[ {{r^{\left( {\alpha + 1} \right)}}} \right]
Therefore, we can write from the above equation x=1x = 1.

Note
The Ampere’s circuital law in electromagnetism relates the integrated magnetic field in a closed loop to the current passing through that loop with a constant of proportionality called the permittivity in free space. It is given by the form, Bdl=μoI\oint {\vec B \cdot d\vec l} = {\mu _o}I.