Solveeit Logo

Question

Question: If the coordinates of the points A, B, C, D, be \(( a , b )\) \(\left( a ^ { \prime } , b ^ { \prime...

If the coordinates of the points A, B, C, D, be (a,b)( a , b ) (a,b)\left( a ^ { \prime } , b ^ { \prime } \right) (a,b)( - a , b ) and (a,b)\left( a ^ { \prime } , - b ^ { \prime } \right) respectively, then the

equation of the line bisecting the line segments AB and CD is.

A

2ay2bx=abab2 a ^ { \prime } y - 2 b x = a b - a ^ { \prime } b ^ { \prime }

B

2ay2bx=abab2 a y - 2 b ^ { \prime } x = a b - a ^ { \prime } b ^ { \prime }

C

2ay2bx=abab2 a y - 2 b ^ { \prime } x = a ^ { \prime } b - a b ^ { \prime }

D

None of these

Answer

2ay2bx=abab2 a y - 2 b ^ { \prime } x = a b - a ^ { \prime } b ^ { \prime }

Explanation

Solution

Mid point of AB=E(a+a2,b+b2)A B = E \left( \frac { a + a ^ { \prime } } { 2 } , \frac { b + b ^ { \prime } } { 2 } \right)and mid point of CD=F(aa2,bb2)C D = F \left( \frac { a ^ { \prime } - a } { 2 } , \frac { b - b ^ { \prime } } { 2 } \right). Hence equation of line EF is

=bbbbaaaa(xa+a2)= \frac { b - b ^ { \prime } - b - b ^ { \prime } } { a ^ { \prime } - a - a - a ^ { \prime } } \left( x - \frac { a + a ^ { \prime } } { 2 } \right)

On simplification, we get 2ay2bx=abab2 a y - 2 b ^ { \prime } x - = a b - a ^ { \prime } b ^ { \prime }.