Solveeit Logo

Question

Question: If the coordinates of the mid points of a triangle be \[\left( {3, - 2} \right)\] , \[\left( { - 3,1...

If the coordinates of the mid points of a triangle be (3,2)\left( {3, - 2} \right) , (3,1)\left( { - 3,1} \right) and (4,3)\left( {4, - 3} \right) , then find the coordinates of its vertices.

Explanation

Solution

Hint : To find the vertices of the triangle, we firstly let the three vertices to be in variable form and then use the midpoint for finding the midpoints of the sides of the triangle using the considered points. After that, we just solve for both the xx and yy coordinates and obtain the vertices of the triangle.
The midpoint formula,
P(X,Y)=(x1+x22,y1+y22)P\left( {X,Y} \right) = \left( {\dfrac{{x_1 + x_2}}{2},\dfrac{{y_1 + y_2}}{2}} \right)
Where, x1x_1 and x2x_2 are the xx coordinates of the end points of the line segment and y1y_1 and y2y_2 are the yy coordinates of the end points of the segment.

Complete step-by-step answer :
It is given that the coordinates of the mid points of the triangle are (3,2)\left( {3, - 2} \right) , (3,1)\left( { - 3,1} \right) and (4,3)\left( {4, - 3} \right) ,
Let the vertices be (x,y)\left( {x,y} \right) , (a,b)\left( {a,b} \right) and (d,e)\left( {d,e} \right)

Now, in order to find the coordinates of the vertices,
We use the midpoint formula, i.e.
P(X,Y)=(x1+x22,y1+y22)P\left( {X,Y} \right) = \left( {\dfrac{{x_1 + x_2}}{2},\dfrac{{y_1 + y_2}}{2}} \right)
So, for the side ABAB , the midpoint, DD is given by
(3,2)=(x+a2,y+b2) x+a=6 y+b=4(1)   \left( {3, - 2} \right) = \left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right) \\\ \Rightarrow x + a = 6 \\\ y + b = - 4 - - - - \left( 1 \right) \;
For the side ACAC , the midpoint FF is given by
(3,1)=(x+d2,y+e2) x+d=6 y+e=2(2)   \left( { - 3,1} \right) = \left( {\dfrac{{x + d}}{2},\dfrac{{y + e}}{2}} \right) \\\ \Rightarrow x + d = - 6 \\\ y + e = 2 - - - - - \left( 2 \right) \;
For side BCBC , the midpoint EE is given by
(4,3)=(a+d2,b+e2) a+d=8 b+e=6(3)   \left( {4, - 3} \right) = \left( {\dfrac{{a + d}}{2},\dfrac{{b + e}}{2}} \right) \\\ \Rightarrow a + d = 8 \\\ b + e = - 6 - - - - - - \left( 3 \right) \;
Solving equations (2)and(3)\left( 2 \right)and\left( 3 \right) ,
x+d=6 y+e=2 a+d=8 b+e=6 6x=8a ax=14(4) and  2y=6b by=8(5)   x + d = - 6 \\\ y + e = 2 \\\ a + d = 8 \\\ b + e = - 6 \\\ \Rightarrow - 6 - x = 8 - a \\\ \Rightarrow a - x = 14 - - - - \left( 4 \right) \\\ and \; 2 - y = - 6 - b \\\ \Rightarrow b - y = - 8 - - - - - \left( 5 \right) \;
Using (4)\left( 4 \right) and (5)\left( 5 \right) in (1)\left( 1 \right)
x+a=6 ax=14 2a=20 a=10 x=6a=610=4   x + a = 6 \\\ a - x = 14 \\\ \Rightarrow 2a = 20 \\\ \Rightarrow a = 10 \\\ \therefore x = 6 - a = 6 - 10 = - 4 \;
Solving for the values of yy and bb
y+b=4 by=8 2b=12 b=6 y=4b=4+6=2   y + b = - 4 \\\ b - y = - 8 \\\ \Rightarrow 2b = - 12 \\\ \Rightarrow b = - 6 \\\ \therefore y = - 4 - b = - 4 + 6 = 2 \;
Hence the points AA and BB are (4,2)\left( { - 4,2} \right) and (10,6)\left( {10, - 6} \right) respectively.
Finding the vertex CC ,
From (3)\left( 3 \right) ,
d=8a=810=2d = 8 - a = 8 - 10 = - 2
And
e=6b=6+6=0e = - 6 - b = - 6 + 6 = 0
So, the vertex CC is (2,0)\left( { - 2,0} \right)
Therefore, the coordinates of the vertices of the triangle are:
(4,2),(10,6),(2,0)\left( { - 4,2} \right),\left( {10, - 6} \right),\left( { - 2,0} \right)
So, the correct answer is “ (4,2),(10,6),(2,0)\left( { - 4,2} \right),\left( {10, - 6} \right),\left( { - 2,0} \right) ”.

Note : The midpoint formula is used to find the middle point of a line segment and is obtained simply by adding the coordinates and dividing it by 22 . This same thing is done for the xx coordinates and the yy coordinates of the end points of the segment.