Solveeit Logo

Question

Mathematics Question on Conic sections

If the coordinates of four concyclic points on the rectangular hyperbola xy=c2xy = c^2 are (cti,c/ti),i=1,2,3,4(ct_i, c / t_i ), \,i = 1, 2, 3, 4 then

A

t1t2t3t4=1t_{1} t_{2} t_3 t_{4} = -1

B

t1t2t3t4=1t_{1} t_{2} t_3 t_{4} = 1

C

t1t3=t2t4t_{1} t_{3} = t_{2} t_{4}

D

t1+t2+t3+t4=c2t_{1}+ t_{2}+ t_3 + t_{4} = c^{2}

Answer

t1t2t3t4=1t_{1} t_{2} t_3 t_{4} = 1

Explanation

Solution

Let the points lie on the circle x2+y2+2gx+2fy+2fy+k=0x^{2} +y ^{2}+2gx +2fy + 2fy + k = 0, then c2ti2+c2ti2+2gcti+2fcti+k=0c^{2}t^{2}_{i} + \frac{c^{2}}{t^{2}_{i}} +2gct_{i} + 2f \frac{c}{t_{i}} + k = 0 c2ti4+2gcti3+kti3+2fcti+c2=0\Rightarrow\quad c^{2}t^{4}_{i} + 2gct^{3}_{i} + kt_{i}^{3} + 2fct_{i} + c^{2} = 0 Its roots are t1,t2,t3,t4t_{1}, t_{2}, t_3, t_{4} so t1t2t3t4=c2c2=1t_{1} t_{2} t_3 t_{4} = \frac{c^{2}}{c^{2}} = 1 Also, t1+t2+t3+t4=2gcc2=2gct_{1}+ t_{2}+ t_{3} + t_{4} = \frac{2gc}{c^{2}} = -\frac{2g}{c}