Solveeit Logo

Question

Question: If the coordinates of a point be given by the equations \(x = b\sec\varphi,\mspace{6mu}\mspace{6mu} ...

If the coordinates of a point be given by the equations x=bsecφ,6mu6muy=atanφx = b\sec\varphi,\mspace{6mu}\mspace{6mu} y = a\tan\varphi, then its locus is.

A

A straight line

B

A circle

C

An ellipse

D

A hyperbola

Answer

A hyperbola

Explanation

Solution

Here xb=secϕ\frac { x } { b } = \sec \phi and (o) ya=tanϕ\frac { y } { a } = \tan \phi

Therefore

x2b2y2a2=sec2ϕtan2ϕx2b2y2a2=1\frac { x ^ { 2 } } { b ^ { 2 } } - \frac { y ^ { 2 } } { a ^ { 2 } } = \sec ^ { 2 } \phi - \tan ^ { 2 } \phi \Rightarrow \frac { x ^ { 2 } } { b ^ { 2 } } - \frac { y ^ { 2 } } { a ^ { 2 } } = 1,

which is obviously a hyperbola.