Solveeit Logo

Question

Mathematics Question on Binomial theorem

If the constant term in the expansion of (35x+2x53)12\left(\frac{\sqrt[5]{3}}{x}+\frac{2x}{\sqrt[3]{5}}\right)^{12}, x0x \neq 0, is α×28×35\alpha \times 2^8 \times \sqrt[5]{3}, then 25α25\alpha is

A

639

B

724

C

693

D

742

Answer

693

Explanation

Solution

Tr+1=(12r)(31/5x)12r(2x51/3)rT_{r+1} = \binom{12}{r} \left(\frac{3^{1/5}}{x}\right)^{12-r} \left(\frac{2x}{5^{1/3}}\right)^r

Tr+1=(12r)312r/5x12r(2x)r(5)r/3T_{r+1} = \binom{12}{r} \frac{3^{12-r}/5}{x^{12-r}} \frac{(2x)^r}{(5)^{r/3}}

Given r=6r = 6, T7=(126)(36/5)(26)(x6)x6(52)=(126)362652T_7 = \binom{12}{6} \frac{(3^{6/5})(2^6)(x^6)}{x^6 (5^2)} = \binom{12}{6} \frac{3^6 \cdot 2^6}{5^2}

Simplifying further, T7=9117252831/5T_7 = \frac{9 \cdot 11 \cdot 7}{25} \cdot 2^8 \cdot 3^{1/5}

Finally, equating, 25α=69325\alpha = 693

Final Answer: 693