Solveeit Logo

Question

Mathematics Question on types of differential equations

If the constant term in the expansion of(3x32x2+5x5)10 (3x^3−2x^2+\frac{5}{x^5})^{10} is 2 k · l, where l is an odd integer, then the value of k is equal to

A

6

B

7

C

8

D

9

Answer

9

Explanation

Solution

The correct option is(D): 9

(3x32x2+5x5)10x0(3x^3−2x^2+\frac{5}{x^5})^{10}→x^0

⇒ (3 x 8 – 2 x 7 + 5)10→ x 50

General term of (3 x 8 – 2 x 7 + 5)10 is

10!p!q!r!(3x8)p(2x7)9(5)r\frac{10!}{p!q!r!}(3x^8)^p(−2x^7)^9(5)^r

Here 8 p + 7 q = 50 and p + q +r = 10

p = 1, q = 6, r = 3

10!1!6!r!312653=2kl∴\frac{10!}{1!6!r!}3^1 2^6⋅5^3=2^k⋅l

53753329=2kl⇒5⋅3⋅7⋅53⋅3⋅29=2^kl

k = 9