Solveeit Logo

Question

Question: If the conjugate of \((x + iy)(1 - 2i)\) be 1+i, then <img src="https://cdn.pureessence.tech/canvas...

If the conjugate of (x+iy)(12i)(x + iy)(1 - 2i) be 1+i, then

A

x=15x = \frac{1}{5}

B

y=35y = \frac{3}{5}

C

x+iy=1i12ix + iy = \frac{1 - i}{1 - 2i}

D

xiy=1i1+2ix - iy = \frac{1 - i}{1 + 2i}

Answer

x+iy=1i12ix + iy = \frac{1 - i}{1 - 2i}

Explanation

Solution

Sol. Given that (x+iy)(12i)=1+i\overline{(x + iy)(1 - 2i)} = 1 + i

xiy=1+i1+2ix+iy=1i12i\Rightarrow x - iy = \frac{1 + i}{1 + 2i} \Rightarrow x + iy = \frac{1 - i}{1 - 2i}