Question
Mathematics Question on Complex Numbers and Quadratic Equations
If the conjugate of (x+iy)(1−2i) is 1+i, then
A
x−iy=1−2i1+i
B
x+iy=1−2i1−i
C
x=51
D
x=−51
Answer
x+iy=1−2i1−i
Explanation
Solution
Let z=(x+iy)(1−2i)
=x+iy−2xi−2i2y
=x+iy−2xi+2y
⇒z=x+2y+i(y−2x)
∴zˉ=x+2y−i(y−2x)
According to the question,
zˉ=1+i
⇒x+2y−i(y−2x)=1+i
On equating the real and imaginary parts from both sides, we get
x+2y=1⇔2x+4y=2...(i)
and y−2x=−1...(ii)
On adding Eqs. (i) and (ii), we get
5y=1⇒y=51
∴ From E (i), we get
2x+4(51)=2
⇒2x=2−54
⇒2x=56
⇒x=53
Taking z=x+iy=1−2i1−i×1+2i1+2i
=1−4i21+2i−i−2i2
z=53+i=53+i51
⇒z=53+i51, which is true.