Solveeit Logo

Question

Physics Question on The Kinetic Theory of Gases

If the collision frequency of hydrogen molecules in a closed chamber at 27°C is ZZ, then the collision frequency of the same system at 127°C is:

A

32Z\frac{\sqrt{3}}{2} Z

B

43Z\frac{4}{3} Z

C

23Z\frac{2}{\sqrt{3}} Z

D

34Z\frac{3}{4} Z

Answer

23Z\frac{2}{\sqrt{3}} Z

Explanation

Solution

Assuming the mean free path remains constant, the collision frequency ff is proportional to the square root of temperature (T\sqrt{T}):

fTf \propto \sqrt{T}

Given:

T1=27C=300K,T2=127C=400KT_1 = 27^\circ C = 300 \, \text{K}, \quad T_2 = 127^\circ C = 400 \, \text{K}

The ratio of collision frequencies is:

f2f1=T2T1=400300=43\frac{f_2}{f_1} = \sqrt{\frac{T_2}{T_1}} = \sqrt{\frac{400}{300}} = \sqrt{\frac{4}{3}}

Therefore:

f2=43f1=23f1f_2 = \sqrt{\frac{4}{3}} \cdot f_1 = \frac{2}{\sqrt{3}} f_1