Solveeit Logo

Question

Mathematics Question on Binomial theorem

If the coefficients of x and x2 in the expansion of (1 + x)p (1 – x)q, p, q≤15, are – 3 and – 5 respectively, then coefficient of x3 is equal to ______.

Answer

Coefficient of x in (1 + x)p (1 – x)q
pC0 qC1+pC1 qC0=3^{−p}C_0\ ^{q}C_1+ ^{p}C_1\ ^qC_0=−3
pq=3⇒ p−q=−3
Coefficient of x2 in (1 + x)p (1 – x)q
pC0 qC2pC1 qC1\+pC2 qC0=5^pC_0\ ^qC_2− ^pC_1\ ^qC_1 \+ ^pC_2\ ^qC_0=−5
q(q1)2pq+p(p1)2=5\frac{q(q−1)}{2}−pq+\frac{p(p−1)}{2}=−5
q2q2(q3)q+(q3)(q4)2=5\frac{q^2−q}{2}−(q−3)q+\frac{(q−3)(q−4)}{2}=−5
⇒ q = 11, p = 8
Coefficient of x3 in (1 + x)8 (1 – x)11 is
=11C3+8C111C28C211C1+8C3=^{−11}C_3+ ^8C_1 ^{11}C_2− ^8C_2 ^{11}C_1+ ^8C_3
=23
So, the answer is 23.