Solveeit Logo

Question

Mathematics Question on Binomial theorem

If the coefficients of x7x^7 and x8x^8 in (2+x3)n\left( 2 + \frac{x}{3} \right)^n are equal, then n is

A

56

B

55

C

49

D

50

Answer

55

Explanation

Solution

Since Tr+1=nCranrxrT_{r+1} =^{n}C_{r} a^{n-r}x^{r} in expansion of (a+x)n \left(a+x\right)^{n} T8=nC7(2)n7(x3)7=nC72n737x7 T_{8} = {^{n}C_{7}} \left(2\right)^{n-7} \left(\frac{x}{3}\right)^{7} = {^{n}C_{7}} \frac{2^{n-7}}{3^{7}} x^{7} and T9=nC8(2)n8(x3)8=nC82n838x8 T_{9} = {^{n}C_{8}} \left(2\right)^{n-8} \left(\frac{x}{3}\right)^{8} = {^{n}C_{8}} \frac{2^{n-8}}{3^{8}} x^{8} Therefore, nC72n737=nC82n838 {^{n}C_{7}} \frac{2^{n-7}}{3^{7} } = {^{n}C_{8}} \frac{2^{n-8}}{3^{8}} (since it is given that coefficient of x7x^7 = coefficient x8x^8) n!7!(n7)!×8!(n8)!n!=2n838.372n7 \Rightarrow \frac{n!}{7! \left(n-7\right)!} \times \frac{8! \left(n-8\right)!}{n!} = \frac{2^{n-8}}{3^{8}} . \frac{3^{7}}{2^{n-7}} 8n7=16n=55\Rightarrow \frac{8}{n-7} = \frac{1}{6} \Rightarrow n = 55