Solveeit Logo

Question

Mathematics Question on Binomial theorem

If the coefficients of x5x^5 and x6x^6 in (2+x3)n\left(2+\frac{x}{3}\right)^{n} are equal, then nn is

A

5151

B

3131

C

4141

D

NoneoftheseNone\, of\, these

Answer

4141

Explanation

Solution

Given expansion is (2+x3)n\left(2+\frac{x}{3}\right)^{n}
Let tr+1t_{r+1} be general term
Then , tr+1=nCr2nr(x3)r=nCr2nr3rxrt_{r+1} = ^nC_r\, 2^{n -r} \left(\frac{x}{3} \right)^r =\, ^nC_r \,2^{n-r} \cdot 3^{-r} x^r
Since coefficients of x5x^5 and x6x^6 are equal
nC62n636=nC52n535\therefore \:\:\:\: ^nC_6 \, 2^{n -6} \,3^{-6} =\, ^nC_5 \, 2^{n -5} \, 3^{-5}
nC6nC5=2×3n!×5!×(n5)!(n6)!×6!×n!=6\Rightarrow \frac{^{n}C_{6}}{^{n}C_{5}} =2\times3 \Rightarrow \frac{n! \times5!\times\left(n -5\right)!}{\left(n-6\right)! \times6!\times n!} =6
n56=6n5=36n=41\Rightarrow \frac{n-5}{6} =6 \Rightarrow n-5=36 \Rightarrow n=41