Solveeit Logo

Question

Question: If the coefficients of \( {\text{}}{{\text{r}}^{{\text{th}}}} \) , \( {{\text{(r + 1)}}^{{\text{th}}...

If the coefficients of rth{\text{}}{{\text{r}}^{{\text{th}}}} , (r + 1)th{{\text{(r + 1)}}^{{\text{th}}}} and (r + 2)th{{\text{(r + 2)}}^{{\text{th}}}} terms in the binomial expansion of (1+x)n{\left( {1 + x} \right)^n} are in A.P., then show that n2(4r+1)n+4r22=0{n^2} - (4r + 1)n + 4{r^2} - 2 = 0 .

Explanation

Solution

Write down the general form of rth{\text{}}{{\text{r}}^{{\text{th}}}} term of binomial expansion of (1+x)n{\left( {1 + x} \right)^n}. For a set of values in arithmetic progression, the sum of the first and third term in the set is equal to twice of the second term.

Formula used:
\Rightarrow The nth{n^{th}} term of the binomial expansion of (1+x)n{(1 + x)^n} is: nCrxr{}^n{C_r}{x^r} .
\Rightarrow For three terms an,an+1,an+2{a_n},{a_{n + 1}},{a_{n + 2}} in arithmetic progression, 2an+1=an+an+22{a_{n + 1}} = {a_n} + {a_{n + 2}} .
\Rightarrow nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}

Complete step by step solution:
We’ve been given that the rth{\text{}}{{\text{r}}^{{\text{th}}}} , (r + 1)th{{\text{(r + 1)}}^{{\text{th}}}} and (r + 2)th{{\text{(r + 2)}}^{{\text{th}}}} terms of the binomial expression of (1+x)n{\left( {1 + x} \right)^n} are in arithmetic progression. Let’s start by finding these terms in the binomial expression. We know that the rth{\text{}}{{\text{r}}^{{\text{th}}}} term of the binomial expression can be written as:
rth\Rightarrow {\text{}}{{\text{r}}^{{\text{th}}}} term: nCr1(1)nr+1xr1=nCr1xr+1{}^n{C_{r - 1}}{(1)^{n - r + 1}}{x^{r - 1}} = {}^n{C_{r - 1}}{x^{r + 1}}
Similarly, we can write
(r + 1)th\Rightarrow {{\text{(r + 1)}}^{{\text{th}}}} term =nCrxr= {}^n{C_r}{x^r} and
(r + 2)th\Rightarrow {{\text{(r + 2)}}^{{\text{th}}}} term =nCr+1xr+1= {}^n{C_{r + 1}}{x^{r + 1}} .
Now since the coefficients of these three terms are in arithmetic progression, we can write
2nCr=nCr1+nCr+1\Rightarrow 2{}^n{C_r} = {}^n{C_{r - 1}} + {}^n{C_{r + 1}}
Dividing both sides by nCr{}^n{C_r} , we get
2=nCr1nCr+nCr+1nCr\Rightarrow 2 = \dfrac{{{}^n{C_{r - 1}}}}{{{}^n{C_r}}} + \dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_r}}}
Since nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} , we can write
2=n!(r1)!(n(r1))!n!r!(nr)!+n!(r+1)!(n(r+1))!n!r!(nr)!\Rightarrow 2 = \dfrac{{\dfrac{{n!}}{{(r - 1)!(n - (r - 1))!}}}}{{\dfrac{{n!}}{{r!(n - r)!}}}} + \dfrac{{\dfrac{{n!}}{{(r + 1)!(n - (r + 1))!}}}}{{\dfrac{{n!}}{{r!(n - r)!}}}}
Using the property that r!=r×(r1)!r! = r \times (r - 1)! , we can simplify the above expression as
2=rnr+1+nrr+1\Rightarrow 2 = \dfrac{r}{{n - r + 1}} + \dfrac{{n - r}}{{r + 1}}
Taking the LCM of the two terms on the right hand side of the equation, we get:
2=r(r+1)+(nr)(nr+1)(nr+1)(r+1)\Rightarrow 2 = \dfrac{{r(r + 1) + (n - r)(n - r + 1)}}{{(n - r + 1)(r + 1)}}
On simplifying the numerator, we get:
2=(r2+r)+(n22nr+r2+nr)(nr+1)(r+1)\Rightarrow 2 = \dfrac{{({r^2} + r) + ({n^2} - 2nr + {r^2} + n - r)}}{{(n - r + 1)(r + 1)}}
On multiplying both sides by (nr+1)(r+1)(n - r + 1)(r + 1) , we get
2(nr+1)(r+1)=(r2+r)+(n22nr+r2+nr)\Rightarrow 2(n - r + 1)(r + 1) = ({r^2} + r) + ({n^2} - 2nr + {r^2} + n - r)
which can be further simplified to
n2(4r+1)n+4r22=0\Rightarrow {n^2} - (4r + 1)n + 4{r^2} - 2 = 0
Hence, we have proved that if the coefficients of rth{\text{}}{{\text{r}}^{{\text{th}}}} , (r + 1)th{{\text{(r + 1)}}^{{\text{th}}}} and (r + 2)th{{\text{(r + 2)}}^{{\text{th}}}} terms in the binomial expansion of (1+x)n{\left( {1 + x} \right)^n} are in A.P. , n2(4r+1)n+4r22=0{n^2} - (4r + 1)n + 4{r^2} - 2 = 0 .

Note:
Since the terms of the binomial expansion are in A.P., we must realize to use the property 2an+1=an+an+22{a_{n + 1}} = {a_n} + {a_{n + 2}} which helps us in relating the coefficients of the binomial expansion. Certain identities of permutation/combination operations can also help in simplifying the solution for e.g. nCr1nCr=rnr+1\dfrac{{{}^n{C_{r - 1}}}}{{{}^n{C_r}}} = \dfrac{r}{{n - r + 1}} .