Solveeit Logo

Question

Question: If the coefficients of \(\sum_{k = 0}^{10}{20C_{k} =}\), \(2^{19} + \frac{1}{2}^{20}C_{10}\) and \(2...

If the coefficients of k=01020Ck=\sum_{k = 0}^{10}{20C_{k} =}, 219+1220C102^{19} + \frac{1}{2}^{20}C_{10} and 2192^{19}terms in the expansion of 20C1020C_{10}are in A.P., then.

A

2n12\frac{2n - 1}{2}

B

12n1\frac{1}{2}n - 1

C

n1n - 1

D

None of these

Answer

12n1\frac{1}{2}n - 1

Explanation

Solution

Coefficient of (r+4)osa(r + 4)osaand a1,a2,a3,a4a_{1},a_{2},a_{3},a_{4} terms in expansion of a1=nCr,a2=nCr+1,a3=nCr+2,a4=nCr+3a_{1} =^{n}C_{r},a_{2} =^{n}C_{r + 1},a_{3} =^{n}C_{r + 2,}a_{4} =^{n}C_{r + 3} are a1a1+a2+a3a3+a4=nCrnCr+nCr+1\frac{a_{1}}{a_{1} + a_{2}} + \frac{a_{3}}{a_{3} + a_{4}} = \frac{nC_{r}}{nC_{r} +^{n}C_{r + 1}}.

Then =r+1n+1+r+3n+1=2(r+2)n+1= \frac{r + 1}{n + 1} + \frac{r + 3}{n + 1} = \frac{2(r + 2)}{n + 1}

=2nCr+1n+1Cr+2=2nCr+1nCr1+nCr+2=2a2a2+a3= 2\frac{nC_{r + 1}}{n + 1C_{r + 2}} = 2\frac{nC_{r + 1}}{nC_{r - 1} +^{n}C_{r + 2}} = \frac{2a_{2}}{a_{2} + a_{3}}

Trick : Let p = 1, hence Tr+1=642Cr(51/2)642r.(71/6)rT_{r + 1} =^{642}C_{r}(5^{1/2})^{642 - r}.(7^{1/6})^{r}and =6426=107= \frac{642}{6} = 107are in A.P.

(2+2)4=(2)4(2+1)4(2 + \sqrt{2})^{4} = (\sqrt{2})^{4}(\sqrt{2} + 1)^{4}

4[4C0+4C1(2)+4C2(2)2+4C3(2)3+4C4(2)4]4\lbrack^{4} ⥂ C_{0} +^{4} ⥂ C_{1}(\sqrt{2}) +^{4} ⥂ C_{2}(\sqrt{2})^{2} +^{4} ⥂ C_{3}(\sqrt{2})^{3} +^{4} ⥂ C_{4}(\sqrt{2})^{4}\rbrack

which is given by (2).