Solveeit Logo

Question

Mathematics Question on Binomial theorem

If the coefficient of x7 in expansion of (ax1bx2)13(ax- \frac{1}{bx^2})^{13} is equal to the coefficient of x-5 in expansion of (ax+1bx2)13(ax + \frac{1}{bx^2})13, then a4b4 is ______

Answer

Given :
Coefficient of x7 is (ax1bx)13(ax-\frac{1}{bx})^{13}
Tr+1=13Cr(ax)13r(1bx2)rT_{r+1}={^{13}C_r}(ax)^{13-r}(-\frac{1}{bx^2})^r
13 - 3r = 7
⇒ r = 2
Coefficient = 13C2a11b2{^{13}C_2}\frac{a^{11}}{b^2}
Coefficient of x-5 is (ax+1bx2)13(ax+\frac{1}{bx^2})^{13}
Tr+1=13Cr(ax)13r(1bx2)rT_{r+1}={^{13}C_r}(ax)^{13-r}(\frac{1}{bx^2})^r
13 - 3r = -5
⇒ r = 6
Coefficient = 13C6a7b6{^{13}C_6}\frac{a^7}{b^6}
Now,
13C2a11b2=13C6a7b6{^{13}C_2}\frac{a^{11}}{b^2}={^{13}C_6\frac{a^7}{b^6}}
a4b4=13C613C2=22a^4b^4=\frac{^{13}C_6}{^{13}C_2}=22
So, the correct answer is 22.