Solveeit Logo

Question

Mathematics Question on binomial expansion formula

If the coefficient of x10 in the binomial expansion of
(x514+5x13)60\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}} + \frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}
is 5k.l, where l, k∈N and l is co-prime to 5, then k is equal to ___________.

Answer

The correct answer is 5
Tr+1=60Cr(x12)60r(x13)r(514)60r(512)rT_{r+1} = ^{60}C_r(x^{\frac{1}{2}})^{60-r}(x^{-\frac{1}{3}})r(5^{\frac{-1}{4}})^{60-r}(5^{\frac{1}{2}})^r
for
x1060r2r3=10x^{10} \frac{60-r}{2}-\frac{r}{3}=10
1803r2r=60⇒ 180-3r-2r=60
⇒ r = 24
∴ Coeff. of
x10=60C2459512x^{10} = \frac{^{60}C_{24}}{5^9} 5^{12} = 5k I
as I and 5 are coprime
k = 3 + exponent of 5 in 60C24^{60}C_{24}
=3+(605+605224524523653652)= 3 + \left(\left\lfloor\frac{60}{5}\right\rfloor + \left\lfloor\frac{60}{5^2}\right\rfloor - \left\lfloor\frac{24}{5}\right\rfloor - \left\lfloor\frac{24}{5^2}\right\rfloor - \left\lfloor\frac{36}{5}\right\rfloor - \left\lfloor\frac{36}{5^2}\right\rfloor\right)
= 3 + (12 + 2 – 4 – 0 – 7 – 1)
= 3 + 2 = 5