Solveeit Logo

Question

Mathematics Question on Binomial theorem

If the coefficient of x7x^7 in [ax2+(1bx)]11\left[ ax^2 + (\frac{1}{bx} ) \right]^{11} equals the coefficient of x7x^{-7} in [ax(1bx2)]11\left[ax - \left(\frac{1}{bx^{2}}\right)\right]^{11} , then a and b satisfy the relation

A

ab=1a - b = 1

B

a+b=1a + b = 1

C

ab=1\frac{a}{b} = 1

D

ab=1ab = 1

Answer

ab=1ab = 1

Explanation

Solution

Tr+1T_{r+1 } in the expansion [ax2(1bx)]11=11Cr(ax2)11r(1bx)r\left[ax^2 - \left(\frac{1}{bx}\right)\right]^{11} = ^{11}C_{r} \left(ax^{2}\right)^{11-r} \left(\frac{1}{bx}\right)^{r} =11Cr(a)11r(b)r(x)222rr= ^{11}C_{r} \left(a\right)^{11-r} \left(b\right)^{-r} \left(x\right)^{22-2r -r} For the Coefficient of x7x^{7} , we have 22 - 3r = 7 \Rightarrow r = 5 \therefore Coefficient of x7x^7 =11C5(a)6(b)5...(1) = ^{11}C_{5} \left(a\right)^{6} \left(b\right)^{-5}\,\,\,...(1) Again Tr+1 T_{r+1} in the expansion [ax1bx2]11=11Cr(ax2)11r(1bx2)r \left[ax - \frac{1}{bx^{2}}\right]^{11} =^{11}C_{r} \left(ax^{2}\right)^{11-r} \left(- \frac{1}{bx^{2}}\right)^{r} =11Cr(a)11r(1)r×(b)r(x)2r(x)11r= ^{11}C_{r} \left(a\right)^{11-r} \left(-1\right)^{r} \times\left(b\right)^{-r} \left(x\right)^{-2r} \left(x\right)^{11-r} For the Coefficient of x7x^{-7} , we have Now 11 - 3r = - 7 \Rightarrow 3r = 18 \Rightarrow r = 6 \therefore Coefficient of x7x^{-7} =11C6a5×1×(b)6 = {^{11}C_{6}} \, a^5 \times 1 \times (b)^{-6} \therefore Coefficient of x7x^{7} = Coefficient of x7x^{-7} 11C5(a)6(b)5=11C6a5×(b)6\Rightarrow {^{11}C_5}(a)^6 (b)^{-5} = {^{11}C_6}a^5 \times (b)^{-6} ab=1\Rightarrow \, ab = 1.