Solveeit Logo

Question

Question: If the coefficient of \[{x^3}\] and \[{x^4}\] in \((1 + ax + b{x^2}){(1 - 2x)^{18}}\) in powers of \...

If the coefficient of x3{x^3} and x4{x^4} in (1+ax+bx2)(12x)18(1 + ax + b{x^2}){(1 - 2x)^{18}} in powers of xx are both zero, then find the value of (a,b)(a,b) .
A. (16,2513)\left( {16,\dfrac{{251}}{3}} \right)
B. (14,2513)\left( {14,\dfrac{{251}}{3}} \right)
C. (13,2723)\left( {13,\dfrac{{272}}{3}} \right)
D. (16,2723)\left( {16,\dfrac{{272}}{3}} \right)

Explanation

Solution

We will first open the bracket of (1+ax+bx2)(1 + ax + b{x^2}) using distributive property and then, find the coefficient of x3{x^3} in (12x)18{(1 - 2x)^{18}}, x2{x^2} in a(12x)18a{(1 - 2x)^{18}} and xx in b(12x)18b{(1 - 2x)^{18}} and equate it to 0 and similarly, coefficient of x4{x^4} in (12x)18{(1 - 2x)^{18}}, x3{x^3} in a(12x)18a{(1 - 2x)^{18}} and x2{x^2} in b(12x)18b{(1 - 2x)^{18}} and equate it to 0. We will thus have our answer.

Complete step-by-step answer:
Let us first look at our given expression which is (1+ax+bx2)(12x)18(1 + ax + b{x^2}){(1 - 2x)^{18}}.
We can rewrite the same as (1+ax+bx2)(12x)18=(12x)18+ax(12x)18+bx2(12x)18(1 + ax + b{x^2}){(1 - 2x)^{18}} = {(1 - 2x)^{18}} + ax{(1 - 2x)^{18}} + b{x^2}{(1 - 2x)^{18}}.
Now, to find the coefficient of xn{x^n} in (12x)18+ax(12x)18+bx2(12x)18{(1 - 2x)^{18}} + ax{(1 - 2x)^{18}} + b{x^2}{(1 - 2x)^{18}} is equivalent to finding the coefficient of xn{x^n} in (12x)18{(1 - 2x)^{18}}, xn1{x^{n - 1}} in a(12x)18a{(1 - 2x)^{18}} and xn2{x^{n - 2}} in b(12x)18b{(1 - 2x)^{18}}.
Let us first discuss the coefficient of xr{x^r} in (a+bx)n{(a + bx)^n}.
Coefficient of xr{x^r} in (a+bx)n{(a + bx)^n} is given by n!r!(nr)!×anr×br\dfrac{{n!}}{{r!\left( {n - r} \right)!}} \times {a^{n - r}} \times {b^r}. ……….(1)
Applying this approach to get the coefficients of x3{x^3} (1+ax+bx2)(12x)18(1 + ax + b{x^2}){(1 - 2x)^{18}} by finding the coefficient of x3{x^3} in (12x)18{(1 - 2x)^{18}}, x2{x^2} in a(12x)18a{(1 - 2x)^{18}} and xx in b(12x)18b{(1 - 2x)^{18}}.
So, the coefficient of x3{x^3} in (12x)18{(1 - 2x)^{18}} using (1) will be:- 18!3!(15)!×1183×(2)3\dfrac{{18!}}{{3!\left( {15} \right)!}} \times {1^{18 - 3}} \times {( - 2)^3} because on comparing, we have a=1,b=2,n=18a = 1,b = - 2,n = 18 and  r=3{\text{ }}r = 3.
We know that n!=n.(n1).(n2)........1n! = n.(n - 1).(n - 2)........1.
Hence, it can be written as:-
Coefficient of x3{x^3} in (12x)18=18×17×16×15!3!(15)!×115×(2)3{(1 - 2x)^{18}} = \dfrac{{18 \times 17 \times 16 \times 15!}}{{3!\left( {15} \right)!}} \times {1^{15}} \times {( - 2)^3}
Simplifying it to get:- Coefficient of x3{x^3} in (12x)18=18×17×163×2×115×8{(1 - 2x)^{18}} = \dfrac{{18 \times 17 \times 16}}{{3 \times 2}} \times {1^{15}} \times - 8.
Simplifying it further by doing the calculation, we will get:-
Coefficient of x3{x^3} in (12x)18=3×17×16×8=6528{(1 - 2x)^{18}} = 3 \times 17 \times 16 \times - 8 = - 6528. ………….(2)
Now, let us find similarly coefficient of x2{x^2} in a(12x)18a{(1 - 2x)^{18}} which will be:- 18×17×16!2!(16)!×116×(2)2×a\dfrac{{18 \times 17 \times 16!}}{{2!\left( {16} \right)!}} \times {1^{16}} \times {( - 2)^2} \times a.
So, coefficient of x2{x^2} in a(12x)18=9×17×4×a=612aa{(1 - 2x)^{18}} = 9 \times 17 \times 4 \times a = 612a. …………(3)
Now, let us find similarly coefficient of xx in b(12x)18b{(1 - 2x)^{18}} which will be:- 18×17!1!(17)!×117×(2)1×b\dfrac{{18 \times 17!}}{{1!\left( {17} \right)!}} \times {1^{17}} \times {( - 2)^1} \times b.
So, coefficient of xx in b(12x)18=18×2×b=36bb{(1 - 2x)^{18}} = 18 \times - 2 \times b = - 36b. …………(4)
Clubbing (2), (3) and (4), we will have:-
Coefficient of x3{x^3} (1+ax+bx2)(12x)18=6528+612a36b(1 + ax + b{x^2}){(1 - 2x)^{18}} = - 6528 + 612a - 36b.
Since, it is equal to 0, so, 6528+612a36b=0 - 6528 + 612a - 36b = 0
This is equivalent to writing: 306a18b=3264306a - 18b = 3264 ……….(5)
Applying the same concept to find coefficient of x4{x^4} in (12x)18+ax(12x)18+bx2(12x)18{(1 - 2x)^{18}} + ax{(1 - 2x)^{18}} + b{x^2}{(1 - 2x)^{18}} is equivalent to finding the coefficient of x4{x^4} in (12x)18{(1 - 2x)^{18}}, x3{x^3} in a(12x)18a{(1 - 2x)^{18}} and x2{x^2} in b(12x)18b{(1 - 2x)^{18}}.
Applying the formula as mentioned above in equation (1), we will get:-
Coefficient of x4{x^4} in (12x)18=18×17×16×15×14!4!(14)!×114×(2)4{(1 - 2x)^{18}} = \dfrac{{18 \times 17 \times 16 \times 15 \times 14!}}{{4!\left( {14} \right)!}} \times {1^{14}} \times {( - 2)^4}
Simplifying it to get:- Coefficient of x4{x^4} in (12x)18=18×17×16×154×3×2×16{(1 - 2x)^{18}} = \dfrac{{18 \times 17 \times 16 \times 15}}{{4 \times 3 \times 2}} \times 16.
Simplifying it further by doing the calculation, we will get:-
Coefficient of x4{x^4} in (12x)18=3×17×4×15×16=48960{(1 - 2x)^{18}} = 3 \times 17 \times 4 \times 15 \times 16 = 48960. ………….(6)
Now, let us find similarly coefficient of x3{x^3} in a(12x)18a{(1 - 2x)^{18}} which will be:- 18×17×16×15!3!(15)!×115×(2)3×a\dfrac{{18 \times 17 \times 16 \times 15!}}{{3!\left( {15} \right)!}} \times {1^{15}} \times {( - 2)^3} \times a.
So, coefficient of x3{x^3} in a(12x)18=3×17×16×(8)×a=6528aa{(1 - 2x)^{18}} = 3 \times 17 \times 16 \times ( - 8) \times a = - 6528a. …………(7)
Now, let us find similarly coefficient of x2{x^2} in b(12x)18b{(1 - 2x)^{18}} which will be:- 18×17×16!2!(16)!×116×(2)2×b\dfrac{{18 \times 17 \times 16!}}{{2!\left( {16} \right)!}} \times {1^{16}} \times {( - 2)^2} \times b.
So, coefficient of x2{x^2} in b(12x)18=9×17×4×b=612bb{(1 - 2x)^{18}} = 9 \times 17 \times 4 \times b = 612b. …………(8)
Clubbing (6), (7) and (8), we will have:-
Coefficient of x4{x^4} (1+ax+bx2)(12x)18=489606528a+612b(1 + ax + b{x^2}){(1 - 2x)^{18}} = 48960 - 6528a + 612b.
Since, it is equal to 0, so, 489606528a+612b=048960 - 6528a + 612b = 0
This is equivalent to writing: 192a+18b=1440 - 192a + 18b = - 1440 ……….(9)
Adding (5) and (9) will result in:- 114a=1824114a = 1824
Hence, a=16a = 16
Putting this in (5), we will get:-
306×1618b=3264306 \times 16 - 18b = 3264
18b=1632\Rightarrow - 18b = - 1632
b=163218=2723\Rightarrow b = \dfrac{{1632}}{{18}} = \dfrac{{272}}{3}.

So, the correct answer is “Option D”.

Additional Information: The formula we used in finding the coefficient, it one part which is n!r!(nr)!\dfrac{{n!}}{{r!\left( {n - r} \right)!}} can be written as nCr^n{C_r} as well which basically means way of choosing r things from n things.

Note: The students must note that if they approach the problem directly before breaking it into three different parts, it may create a lot of confusion and hassle.