Solveeit Logo

Question

Mathematics Question on Binomial theorem

If the coefficient of x15x^{15} in the expansion of (ax3+1bx1/3)15\left(a x^3+\frac{1}{b x^{1 / 3}}\right)^{15} is equal to the coefficient of x15x^{-15} in the expansion of (ax1/31bx3)15\left(a x^{1 / 3}-\frac{1}{b x^3}\right)^{15}, where a and bb are positive real numbers, then for each such ordered pair (a,b)(a, b) :

A

a=3ba=3 b

B

a=ba=b

C

ab=1ab =1

D

ab=3a b=3

Answer

ab=1ab =1

Explanation

Solution

Coefficient Ofx15 in (ax3+bx1/31​)15
Tr+1​=15Cr​(ax3)15−r(bx1/31​)r
45−3r−3r​=15
30=310r​
r=9
Coefficient of x15=15C9​a6b−9
Coefficient of x−15 in (ax1/3−bx31​)15
Tr+1​=15Cr​(ax1/3)15−r(−bx31​)r
5−3r​−3r=−15
310r​=20
r=6
Coefficient =15C6​a9×b−6
⇒b6a9​=b9a6​
⇒a3b3=1⇒ab=1