Solveeit Logo

Question

Mathematics Question on Conic sections

If the circles x2+y2=9x ^2 + y ^2 =9 and x2+y2+2αx+2y+1=0x^2 + y^ 2 + 2\alpha x + 2y +1 = 0 touch each other internally, then α\alpha =

A

±43\pm \frac {4}{3}

B

11

C

43 \frac {4}{3}

D

43- \frac {4}{3}

Answer

±43\pm \frac {4}{3}

Explanation

Solution

The correct option is(A): ±43\pm \frac {4}{3}.

Centers and radii of the given circles x2+y2=9x^{2}+y^{2}=9
and x2+y2+2ax+2y+1=0x^{2}+y^{2}+2 a x+2 y+1=0 is C1(0,0),r1=3C_{1}(0,0), r_{1}=3
and C2(α,1)C_{2}(-\alpha, 1) and r2=α2+11=αr_{2}=\sqrt{\alpha^{2}+1-1}=|\alpha|
Since, two circles touch internally,
C1C2=r1r2\therefore C_{1} C_{2}=r_{1}-r_{2}
,α2+12=3α\Rightarrow \,\,\,,\sqrt{\alpha^{2}+1^{2}}=3-|\alpha|
α2+1=9+α26α\Rightarrow \,\,\,\alpha^{2}+1=9+\alpha^{2}-6|\alpha|
6α=8\Rightarrow \,\,\,\,6|\alpha|=8
α=43\Rightarrow|\alpha|=\frac{4}{3}
α=±43\Rightarrow \,\,\,\alpha=\pm \frac{4}{3}