Solveeit Logo

Question

Mathematics Question on Conic sections

If the circles x2+y22x2y7=0x^2 + y^2 - 2x - 2y - 7 = 0 and x2+y2+4x+2y+k=0x^2 + y^2 + 4x + 2y + k = 0 cut orthogenally, then the length of the common chord of the circles is

A

2

B

12/1312/\sqrt{13}

C

8

D

5

Answer

12/1312/\sqrt{13}

Explanation

Solution

Given, circles are
S1=x2+y22x2y7=0S_1 = x^2 + y^2 - 2 x - 2 y - 7 = 0
S2=x2+y2+4x+2y+k=0S_2 = x^2 + y^2 + 4x + 2y + k = 0
Here, g1=1,f1=1.c1=7 g_1 = - 1 , f_1 = - 1 . c_1 = - 7
g2=2,f2=1,c2=kg_2 = 2 , f_2 = 1 , c_2 = k

Equation of common chord is S1S2=0S_1 - S_2 = 0
x2+y22x2y7x2y24x2yk=0\Rightarrow \, x^2 + y^2 - 2 x - 2 y - 7 - x^2- y^2- 4 x - 2y - k = 0
6x4y7?k=0\Rightarrow \,- 6 x - 4 y - 7 ? k = 0
6x+4y+7+k=0(i)\Rightarrow \,6x + 4y + 7 + k = 0 \,\,\,\,\,\dots(i)
Since, S1S_1 and S2S_2 cut orthogonally
2(g1g2+f1f2)=c1+c2\therefore \, 2 (g_1 g_2 + f_1 f_2) = c_1 + c_2
2(21)=7+k\Rightarrow \, 2 (-2 - 1) = - 7 + k
6+7=k\Rightarrow \, -6 + 7 = k
k=1\Rightarrow \, k = 1
Then, from Eqs. (i), we get
6x+4y+8=06 x + 4 y + 8 = 0
Now, length of the common chord
r1=1+1+7=3r_{1} = \sqrt{1+1+7} = 3
c1=(1,1)c_{1} =\left(1,1\right)
Let C1MC_1M = perpendicular distance from centre C1(1,1)C_1(1,1) to the common chord
6x+4y+8=06 x + 4 y + 8 = 0
C1M=6+4+862+42=1852=18213=913\Rightarrow C_{1}M = \frac{\left|6+4+8\right|}{\sqrt{6^{2} +4^{2}}} = \frac{\left|18\right|}{5^{2}} = \frac{18}{2\sqrt{13}} = \frac{9}{\sqrt{13}}
Now, PQ=2PM=2(C1P)2(C1M)2 PQ = 2PM = 2 \sqrt{\left(C_{1}P\right)^{2} -\left(C_{1} M\right)^{2}}
=29(913)2=2 \sqrt{9- \left(\frac{9}{\sqrt{13}}\right)^{2}}
=298113= 2\sqrt{9- \frac{81}{13}}
=23613=1213=2 \sqrt{\frac{36}{13}} = \frac{12}{\sqrt{13}}