Solveeit Logo

Question

Question: If the circle \(x^{2} + y^{2} = 4\) bisects the circumference of the circle\(x^{2} + y^{2} - 2x + 6y...

If the circle x2+y2=4x^{2} + y^{2} = 4 bisects the circumference of the circlex2+y22x+6y+a=0,x^{2} + y^{2} - 2x + 6y + a = 0, then a equals

A

4

B

– 4

C

16

D

– 16

Answer

16

Explanation

Solution

The common chord of given circles is S1S2=0S_{1} - S_{2} = 0

2x6y4a=0\Rightarrow 2x - 6y - 4 - a = 0 …..(i)

Since, x2+y2=4x^{2} + y^{2} = 4 bisects the circumferences of the circle x2+y22x+6y+a=0,x^{2} + y^{2} - 2x + 6y + a = 0, therefore (i) passes through the centre of second circle i.e. (1, – 3).

\therefore 2 + 18 – 4 – a = 0

⇒ a = 16.