Solveeit Logo

Question

Question: If the circle \(x ^ { 2 } + y ^ { 2 } + 2 g x + 2 f y + c = 0\) touches x-axis, then....

If the circle x2+y2+2gx+2fy+c=0x ^ { 2 } + y ^ { 2 } + 2 g x + 2 f y + c = 0 touches x-axis, then.

A

g=fg = f

B

g2=cg ^ { 2 } = c

C

f2=cf ^ { 2 } = c

D

g2+f2=cg ^ { 2 } + f ^ { 2 } = c

Answer

g2=cg ^ { 2 } = c

Explanation

Solution

Touches x-axis, hence radius = ordinate of centre.

Hence g2+f2c=(f)\sqrt { g ^ { 2 } + f ^ { 2 } - c } = ( - f ) or g2=cg ^ { 2 } = c.