Solveeit Logo

Question

Mathematics Question on Conic sections

If the chords of contact of tangents from two points (x1,y1)(x_1,\,y_1) and (x2,y2)(x_2,\,y_2) to the hyperbola x2a2y2b2=1\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 are at right angles, then x1x2y1y2\frac{x_1\,x_2}{y_1\,y_2} is equal to

A

a2b2-\frac{a^2}{b^2}

B

b2a2-\frac{b^2}{a^2}

C

b4a4-\frac{b^4}{a^4}

D

a4b4-\frac{a^4}{b^4}

Answer

a4b4-\frac{a^4}{b^4}

Explanation

Solution

Chords of contact are xx1a2yy1b2=1,xx2a2yy2b2=1\frac{xx_{1}}{a^{2}}-\frac{yy_{1}}{b^{2}} = 1, \frac{xx_{2}}{a^{2}}-\frac{yy_{2}}{b^{2}} = 1 These are at right angles. b2a2x1y1b2a2x2y2=1\therefore\frac{b^{2}}{a^{2}}\cdot\frac{x_{1}}{y_{1}}\cdot\frac{b^{2}}{a^{2}}\cdot\frac{x_{2}}{y_{2}} = -1 x1x2y1y2=a4b4 \therefore \frac{x_{1}x_{2}}{y_{1}y_{2}} = -\frac{a^{4}}{b^{4}}