Solveeit Logo

Question

Question: If the chord \(y=mx+c\) subtends a right angle at the vertex of the parabola \({{y}^{2}}=4ax\), then...

If the chord y=mx+cy=mx+c subtends a right angle at the vertex of the parabola y2=4ax{{y}^{2}}=4ax, then the value of c is
(A) -4am
(B) 4am
(C) -2am
(D) 2am

Explanation

Solution

We solve this question by first assuming the given chord intersects the parabola y2=4ax{{y}^{2}}=4ax at the points A(at12,2at1)A\left( at_{1}^{2},2a{{t}_{1}} \right) and B(at22,2at2)B\left( at_{2}^{2},2a{{t}_{2}} \right). Then we find the slopes of the lines from point A to origin and line from B to origin and use the condition that the lines with slopes m1{{m}_{1}} and m2{{m}_{2}}are perpendicular then m1m2=1{{m}_{1}}{{m}_{2}}=-1 to find the relation between t1{{t}_{1}} and t2{{t}_{2}}. Then we find the equation of chord AB and compare with the equation of the given chord and find the value of c.

Complete step by step answer:
We are given that the chord y=mx+cy=mx+c of the parabola y2=4ax{{y}^{2}}=4ax and it subtends a right angle at the vertex.
Let us assume that the chord intersects the parabola y2=4ax{{y}^{2}}=4ax at points A(at12,2at1)A\left( at_{1}^{2},2a{{t}_{1}} \right) and B(at22,2at2)B\left( at_{2}^{2},2a{{t}_{2}} \right).

Now let us find the slope of the lines from the vertex of the parabola, that is origin to the points A and B.
Slope of the line OA is
m1=2at10at120=2at1at12=2t1{{m}_{1}}=\dfrac{2a{{t}_{1}}-0}{at_{1}^{2}-0}=\dfrac{2a{{t}_{1}}}{at_{1}^{2}}=\dfrac{2}{{{t}_{1}}}
Slope of the line OB is,
m2=2at20at220=2at2at22=2t2{{m}_{2}}=\dfrac{2a{{t}_{2}}-0}{at_{2}^{2}-0}=\dfrac{2a{{t}_{2}}}{at_{2}^{2}}=\dfrac{2}{{{t}_{2}}}
As we are given that the chord bisects the right angle at the vertex of the parabola, the product of the slopes of the lines from origin to A and B is -1.
m1m2=1\Rightarrow {{m}_{1}}{{m}_{2}}=-1
Substituting the values of m1{{m}_{1}} and m2{{m}_{2}} in the above formula we get,
2t1×2t2=1 t1t2=4 \begin{aligned} & \Rightarrow \dfrac{2}{{{t}_{1}}}\times \dfrac{2}{{{t}_{2}}}=-1 \\\ & \Rightarrow {{t}_{1}}{{t}_{2}}=-4 \\\ \end{aligned}
Now let us find the equation of the chord AB.
Let us consider the formula for line joining (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) is
(yy1)=y2y1x2x1(xx1)\left( y-{{y}_{1}} \right)=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\left( x-{{x}_{1}} \right)
Using this we can find the equation of AB as,
(y2at1)=2at22at1at22at12(xat12) (y2at1)=2a(t2t1)a(t22t12)(xat12) (y2at1)=2t2+t1(xat12) \begin{aligned} & \Rightarrow \left( y-2a{{t}_{1}} \right)=\dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{at_{2}^{2}-at_{1}^{2}}\left( x-at_{1}^{2} \right) \\\ & \Rightarrow \left( y-2a{{t}_{1}} \right)=\dfrac{2a\left( {{t}_{2}}-{{t}_{1}} \right)}{a\left( t_{2}^{2}-t_{1}^{2} \right)}\left( x-at_{1}^{2} \right) \\\ & \Rightarrow \left( y-2a{{t}_{1}} \right)=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\left( x-at_{1}^{2} \right) \\\ \end{aligned}
y=2t2+t1x2at12t2+t1+2at1 y=2t2+t1x2at122at1(t2+t1)t2+t1 \begin{aligned} & \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x-\dfrac{2at_{1}^{2}}{{{t}_{2}}+{{t}_{1}}}+2a{{t}_{1}} \\\ & \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x-\dfrac{2at_{1}^{2}-2a{{t}_{1}}\left( {{t}_{2}}+{{t}_{1}} \right)}{{{t}_{2}}+{{t}_{1}}} \\\ \end{aligned}
y=2t2+t1x2at122at1t22at12t2+t1 y=2t2+t1x+2at1t2t2+t1 \begin{aligned} & \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x-\dfrac{2at_{1}^{2}-2a{{t}_{1}}{{t}_{2}}-2at_{1}^{2}}{{{t}_{2}}+{{t}_{1}}} \\\ & \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x+\dfrac{2a{{t}_{1}}{{t}_{2}}}{{{t}_{2}}+{{t}_{1}}} \\\ \end{aligned}
Let us substitute the value of t1t2=4{{t}_{1}}{{t}_{2}}=-4 in the above equation.
y=2t2+t1x+2at1t2t2+t1 y=2t2+t1x+2a(4)t2+t1 y=2t2+t1x8at2+t1 \begin{aligned} & \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x+\dfrac{2a{{t}_{1}}{{t}_{2}}}{{{t}_{2}}+{{t}_{1}}} \\\ & \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x+\dfrac{2a\left( -4 \right)}{{{t}_{2}}+{{t}_{1}}} \\\ & \Rightarrow y=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}x-\dfrac{8a}{{{t}_{2}}+{{t}_{1}}} \\\ \end{aligned}
As we are given that the equation of the chord is y=mx+cy=mx+c, let us compare the both equations.
m=2t2+t1 c=8at2+t1 \begin{aligned} & \Rightarrow m=\dfrac{2}{{{t}_{2}}+{{t}_{1}}} \\\ & \Rightarrow c=-\dfrac{8a}{{{t}_{2}}+{{t}_{1}}} \\\ \end{aligned}
As we need to find the value of c,
c=4a(2t2+t1) c=4am \begin{aligned} & \Rightarrow c=-4a\left( \dfrac{2}{{{t}_{2}}+{{t}_{1}}} \right) \\\ & \Rightarrow c=-4am \\\ \end{aligned}
Hence the value of c is -4am.
Hence, the answer is Option A.

Note:
The general mistake one does while solving this problem is one might take the formula for perpendicular lines wrong as, when two lines with slopes m1{{m}_{1}} and m2{{m}_{2}}are perpendicular then m1m2=1{{m}_{1}}{{m}_{2}}=1. But actually, it is m1m2=1{{m}_{1}}{{m}_{2}}=-1.