Solveeit Logo

Question

Question: If the centroid of tetrahedron OABC where A, B, C are given by (a, 2, 3), (1, b, 2) and (2, 1, c) re...

If the centroid of tetrahedron OABC where A, B, C are given by (a, 2, 3), (1, b, 2) and (2, 1, c) respectively is (1, 2, -2), then distance of P (a, b, c) from origin is
a) 195\sqrt{195}
b) 14\sqrt{14}
c) 10714\sqrt{\dfrac{107}{14}}
d) 13\sqrt{13}

Explanation

Solution

The centroid or geometric center of a figure is the arithmetic mean position of all the points in the figure. Let ABCD is a tetrahedron whose vertices A(x1,y1,z1); B(x2,y2,z2); C(x3,y3,z3)\text{A(}{{\text{x}}_{1}}\text{,}{{\text{y}}_{1}}\text{,}{{\text{z}}_{1}}\text{); B(}{{\text{x}}_{2}}\text{,}{{\text{y}}_{2}}\text{,}{{\text{z}}_{2}}\text{); C(}{{\text{x}}_{3}}\text{,}{{\text{y}}_{3}}\text{,}{{\text{z}}_{3}}\text{)} and D(x4,y4,z4)\text{D(}{{\text{x}}_{4}}\text{,}{{\text{y}}_{4}}\text{,}{{\text{z}}_{4}}\text{)}then, the centroid (G) is given as:
G(x,y,z)=[x1+x2+x3+x44,y1+y2+y3+y44,z1+z2+z3+z44]G(x,y,z)=\left[ \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}}{4},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}+{{y}_{4}}}{4},\dfrac{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}+{{z}_{4}}}{4} \right]. Use this formula to find the centroid for triangle OABC and then equate the coordinates with the point (1, 2, -2) to get the values of a, b and c. Now, we get point P (a, b, c). Then, find the distance between point origin and point P (a, b, c) using distance formula:
d=(x2x1)2+(y2y1)2+(z2z1)2d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}

Complete step by step answer:
Consider the diagram of tetrahedron OABC given below, whose vertices are A(a,2,3);B(1,b,2);C(2,1,c)\text{A(a,2,3);B(1,b,2);C(2,1,c)} and O(0,0,0)\text{O(0,0,0)}.
G (1, 2, -2) represents the centroid of the tetrahedron, and P (a, b, c) is the arbitrary point at a distance ‘d’ from the origin.

For a tetrahedron with vertices, A(x1,y1,z1); B(x2,y2,z2); C(x3,y3,z3)\text{A(}{{\text{x}}_{1}}\text{,}{{\text{y}}_{1}}\text{,}{{\text{z}}_{1}}\text{); B(}{{\text{x}}_{2}}\text{,}{{\text{y}}_{2}}\text{,}{{\text{z}}_{2}}\text{); C(}{{\text{x}}_{3}}\text{,}{{\text{y}}_{3}}\text{,}{{\text{z}}_{3}}\text{)} and D(x4,y4,z4)\text{D(}{{\text{x}}_{4}}\text{,}{{\text{y}}_{4}}\text{,}{{\text{z}}_{4}}\text{)}, the centroid (G) is given as:
G(x,y,z)=[x1+x2+x3+x44,y1+y2+y3+y44,z1+z2+z3+z44]G(x,y,z)=\left[ \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}}{4},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}+{{y}_{4}}}{4},\dfrac{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}+{{z}_{4}}}{4} \right]
Therefore, for the given tetrahedron OABC whose vertices are A(a,2,3);B(1,b,2);C(2,1,c)\text{A(a,2,3);B(1,b,2);C(2,1,c)} and O(0,0,0)\text{O(0,0,0)}, the centroid is
G(1,2,2)=[a+1+2+04,2+b+1+04,3+2+c+04]......(1)\text{G}(1,2,-2)=\left[ \dfrac{\text{a}+1+2+0}{4},\dfrac{2+\text{b}+1+0}{4},\dfrac{3+2+\text{c}+0}{4} \right]......(1)
By equating the coordinates of centroid in equation (1), we get:

& \dfrac{3+a}{4}=1......(2) \\\ & \dfrac{b+3}{4}=2......(3) \\\ & \dfrac{5+c}{4}=-2.......(4) \\\ \end{aligned}$$ So, we get values of a, b and c from equation (2), (3) and (4); $$\begin{aligned} & \Rightarrow a=1 \\\ & \Rightarrow b=5 \\\ & \Rightarrow c=-13 \\\ \end{aligned}$$ Since the arbitrary point P is given as P (a, b, c). Substituting values of a, b, and c, we can write it as: P (1, 5, -13) Now, we need to find the distance between P (1, 5, -13) and origin O (0, 0, 0). To find distance between two points $$\text{P(}{{\text{x}}_{1}}\text{,}{{\text{y}}_{1}}\text{,}{{\text{z}}_{1}}\text{) and Q(}{{\text{x}}_{2}}\text{,}{{\text{y}}_{2}}\text{,}{{\text{z}}_{2}}\text{)}$$, use distance formula, i.e. $$d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}$$ Therefore, distance between P (1, 5, -13) and origin O (0, 0, 0) is: $$\begin{aligned} & d=\sqrt{{{\left( 1-0 \right)}^{2}}+{{\left( 5-0 \right)}^{2}}+{{\left( -13-0 \right)}^{2}}} \\\ & =\sqrt{1+25+169} \\\ & =\sqrt{195} \end{aligned}$$ **So, the correct answer is “Option A”.** **Note:** Another way to find centroid is stated below: Firstly, find the centroids of each of the triangular faces of the tetrahedron. All the centroids when joined together form a triangle itself. Find the centroid of that triangle, which is the centroid of the tetrahedron. Equate the coordinates and get the values of a, b and c. Hence, find the distance between origin and P (a, b, c).