Solveeit Logo

Question

Physics Question on physical world

If the capacitance of a nanocapacitor is measured in terms of a unit u'u' made by combining the electronic charge VV, Bohr radius a0'a_0', Planck's constant h'h' and speed of light c'c' then :

A

u=e2cha0u = \frac{e^{2}c}{ha_{0}}

B

u=e2hca0u = \frac{e^{2}h}{ca_{0}}

C

u=e2a0hcu = \frac{e^{2}a_{0}}{hc}

D

u=hce2a0u = \frac{hc}{e^{2}a_{0}}

Answer

u=e2a0hcu = \frac{e^{2}a_{0}}{hc}

Explanation

Solution

C=qΔV;E=hf=hcλC=\frac{q}{\Delta V} ; E=h f=\frac{h c}{\lambda}
Working in dimensions
[C]=[qΔV][qq]=[q2qΔV]=[q2E]=[q2a0hc][C]=\left[\frac{q}{\Delta V}\right]\left[\frac{q}{q}\right]=\left[\frac{q^{2}}{q \Delta V}\right]=\left[\frac{q^{2}}{E}\right]=\left[\frac{q^{2} a_{0}}{h c}\right]