Solveeit Logo

Question

Question: If the arithmetic mean of the numbers \(x_{1},x_{2},x_{3},......,x_{n}\) is \(\bar{x}\), then the ar...

If the arithmetic mean of the numbers x1,x2,x3,......,xnx_{1},x_{2},x_{3},......,x_{n} is xˉ\bar{x}, then the arithmetic mean of numbers

ax1+b,ax2+b,ax3+b,........,axn+bax_{1} + b,ax_{2} + b,ax_{3} + b,........,ax_{n} + b, where a, b are two constants would be

A

xˉ\bar{x}

B

naxˉ+nbna\bar{x} + nb

C

axˉa\bar{x}

D

axˉ+ba\bar{x} + b

Answer

axˉ+ba\bar{x} + b

Explanation

Solution

Required mean =(ax1+b)+(ax2+b)+.....+(axn+b)n= \frac{(ax_{1} + b) + (ax_{2} + b) + ..... + (ax_{n} + b)}{n}

=a(x1+x2+.....+xn)+nbn=axˉ+b,= \frac{a(x_{1} + x_{2} + ..... + x_{n}) + nb}{n} = a\bar{x} + b,

(6mu6mu6mux1+x2+.....+xnn=xˉ)\left( \because\mspace{6mu}\mspace{6mu}\mspace{6mu}\frac{x_{1} + x_{2} + ..... + x_{n}}{n} = \bar{x} \right).