Question
Mathematics Question on Area between Two Curves
If the area of the region (x,y):x2/3+y2/3≤1,x+y≥0,y≥0 is A, then π(256A)is equal to_______.
Answer
∴ Area of shaded region =$$\int_{-\frac{1}{2}^{3/2}}^0 \left((1 - x^{2/3})^{3/2} + x\right) \, dx + \int_0^1 (1 - x^{2/3})^{3/2} \, dx
=$$\int_{-\frac{1}{2}^{3/2}}^0 (1 - x^{2/3})^{3/2} \, dx + \int_{-\frac{1}{2}^{3/2}}^0 x \, dx
Let x = sin3θ
∴ dx=3sin2θcosθdθ
∫−4π2π3sin2θcos4θdθ+(0−161)
=$$\frac{9\pi}{64} + \frac{1}{16} - \frac{1}{16} = \frac{36\pi}{256} = A
∴$$\frac{256A}{\pi} = 36