Solveeit Logo

Question

Mathematics Question on Area between Two Curves

If the area of the region (x,y):x2/3+y2/31,x+y0,y0\\{(x, y) : x^{2/3} + y^{2/3} \leq 1, x + y \geq 0, y \geq 0\\} is A, then (256A)π\frac{(256 A)}{\pi} is equal to_______.

Answer

area of the region

Area of shaded region =$$\int_{-\frac{1}{2}^{3/2}}^0 \left((1 - x^{2/3})^{3/2} + x\right) \, dx + \int_0^1 (1 - x^{2/3})^{3/2} \, dx

=$$\int_{-\frac{1}{2}^{3/2}}^0 (1 - x^{2/3})^{3/2} \, dx + \int_{-\frac{1}{2}^{3/2}}^0 x \, dx
Let x == sin3θ\sin^3 \theta
dx=3sin2θcosθdθdx = 3\sin^2 \theta \cos \theta \, d\theta

π4π23sin2θcos4θdθ+(0116)\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} 3\sin^2 \theta \cos^4 \theta \, d\theta + \left(0 - \frac{1}{16}\right)

=$$\frac{9\pi}{64} + \frac{1}{16} - \frac{1}{16} = \frac{36\pi}{256} = A

∴$$\frac{256A}{\pi} = 36