Solveeit Logo

Question

Mathematics Question on Area under Simple Curves

If the area of the region \left\\{(x, y) : \frac{a}{x^2} \leq y \leq \frac{1}{x}, \, 1 \leq x \leq 2, \, 0<a<1 \right\\} is (log2)17,(\log 2) - \frac{1}{7}, then the value of 7a37a - 3 is equal to:

A

2

B

0

C

-1

D

1

Answer

-1

Explanation

Solution

The area of the region is given by:
Area=12(1xax2)dx\text{Area} = \int_1^2 \left( \frac{1}{x} - \frac{a}{x^2} \right) dx
Evaluating this integral:
=[lnx+ax]12= \left[ \ln x + \frac{a}{x} \right]_1^2
=ln2+a2a=log2217= \ln 2 + \frac{a}{2} - a = \log_2 2 - \frac{1}{7}
Equating and solving for aa:
a2=17-\frac{a}{2} = -\frac{1}{7}
a=27a = \frac{2}{7}
Now, calculating 7a37a - 3:
7a=27a = 2
7a3=17a - 3 = -1