Solveeit Logo

Question

Mathematics Question on Vector Algebra

If the area of the parallelogram with a\vec{a} and b\vec{b} as two adjacent sides is 1515 s units then the area of the parallelogram having 3a+2b3 \vec{a}+2 \vec{b} and a+3b\vec{a}+3 \vec{b} as two adjacent sides in s units is

A

45

B

75

C

105

D

120

Answer

105

Explanation

Solution

a×b=15|\vec{ a } \times \vec{ b }|=15 (3a+2b)×(a+3b)|(3 \vec{ a }+2 \vec{ b }) \times(\vec{ a }+3 \vec{ b })| =9(a+b)×2(b+a)=|9(\vec{ a }+\vec{ b }) \times 2(\vec{ b }+\vec{ a })| =7(a×b)=7×15=105=|7(\vec{ a } \times \vec{ b })|=7 \times 15=105