Solveeit Logo

Question

Mathematics Question on Product of Two Vectors

If the area of the parallelogram with a\vec {a} and b\vec {b} as two adjacent sides is 15sq.  units15\, sq.\space units,then the area of the parallelogram having 3a+2b3\vec {a}+2\vec {b} and a+3b\vec{a}+3\vec {b} as two adjacent sides in sq. unit is

A

45

B

75

C

105

D

120

Answer

105

Explanation

Solution

The correct answer is C:105
We know, if a\vec{a} and b\vec{b} are two adjacent sides of a parallelogram, then
Area =a×b=15= | \vec{a} \times \vec{b}| = 15 (given) (i)\dots(i)
If the sides are (3  a+2b)(3 \; \vec{a} + 2 \vec{b}) and (a+3b)( \vec{a} + 3 \vec{b}), then
Area of parallelogram
=(3a+2b)×(a+3b)= \left|\left(3 \vec{a} +2\vec{b}\right) \times\left(\vec{a} + 3\vec{b}\right)\right|
=7(a×b)= \left|7 \left(\vec{a} \times\vec{b}\right)\right|
=7a×b=7\left|\vec{a} \times\vec{b}\right|
=7×15= 7 \times15 (From (i))
=105= 105 sq unit