Solveeit Logo

Question

Mathematics Question on Conic sections

If the area of the auxiliary circle of the ellipse x2a2+y2b2=1(a>b)\frac {x^2}{a^2}+\frac {y^2}{b^2}=1 (a >\, b) is twice the area of the ellipse, then the eccentricity of the ellipse is

A

13\frac {1}{\sqrt {3}}

B

12\frac {1}{2}

C

12\frac {1}{\sqrt {2}}

D

32\frac {\sqrt {3}} {2}

Answer

32\frac {\sqrt {3}} {2}

Explanation

Solution

The correct answer is D:32\frac{\sqrt{3}}{2}
Equation of auxiliary circle of the ellipse,
x2a2+y2b2=1 is x2+y2=a2\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text { is } x^{2}+y^{2}=a^{2}
\therefore Area of auxiliary circle =πa2=\pi a^{2}
and area of an ellipse =πab=\pi \,a b
Now, according to the question
πa2=2(πab)\pi a^{2}=2(\pi \,a b)
a=2b\Rightarrow a=2 b
b=a2...(i)\Rightarrow b=\frac{a}{2}\,\,\,\,\,\,...(i)
\thereforeEcentricity (e)=1b2a2\sqrt{1-\frac{b^2}{a^2}}
=1b24b2\sqrt{1-\frac{b^2}{4b^2}}
=114\sqrt{1-\frac{1}{4}}
e=32\frac{\sqrt{3}}{2}
circle
circle