Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

If the angular momentum of a particle of mass mm rotating along a circular path of radius rr with uniform speed is LL, the centripetal force acting on the particle is

A

L2mr3\frac{L^2}{mr^3}

B

L2mr\frac{L^2}{mr}

C

Lmr2\frac{L}{mr^2}

D

L2mr\frac{L^2m}{r}

Answer

L2mr3\frac{L^2}{mr^3}

Explanation

Solution

Angular momentum
L=IωL=I \omega
whereI=mr2I=m r^{2} and ω=Vr\omega=\frac{V}{r}
L=mr2×VrL=m r^{2} \times \frac{V}{r}
L=mvr...(i)L=m v r\,\,\,...(i)
Centripetal force
F=mv2rF=\frac{m v^{2}}{r}
F=mr(Lmr)2[F=\frac{m}{r} \cdot\left(\frac{L}{m r}\right)^{2} \,\,\,[ From E (i)]
F=mL2rm2r2F=\frac{m L^{2}}{r \cdot m^{2} \cdot r^{2}}
F=L2mr3F=\frac{L^{2}}{m r^{3}}