Solveeit Logo

Question

Question: If the angles of a triangle be in the ratio 1 : 2 : 7, then the ratio of its greatest side to the le...

If the angles of a triangle be in the ratio 1 : 2 : 7, then the ratio of its greatest side to the least side is.

A

1:21 : 2

B

2 :1

C

(5+1):(51)( \sqrt { 5 } + 1 ) : ( \sqrt { 5 } - 1 )

D

(51):(5+1)( \sqrt { 5 } - 1 ) : ( \sqrt { 5 } + 1 )

Answer

(5+1):(51)( \sqrt { 5 } + 1 ) : ( \sqrt { 5 } - 1 )

Explanation

Solution

x+2x+7x=180x=18x + 2 x + 7 x = 180 ^ { \circ } \Rightarrow x = 18 ^ { \circ }

Hence the angles are 18,36,12618 ^ { \circ } , 36 ^ { \circ } , 126 ^ { \circ }

Greatest side \propto sin(126)\sin \left( 126 ^ { \circ } \right)

Smallest side \propto sin(18)\sin \left( 18 ^ { \circ } \right) and ratio=sin126sin(18)=5+151= \frac { \sin 126 ^ { \circ } } { \sin \left( 18 ^ { \circ } \right) } = \frac { \sqrt { 5 } + 1 } { \sqrt { 5 } - 1 }.