Solveeit Logo

Question

Question: If the angles of a triangle are in the ratio 4 : 1 : 1, then the ratio of the longest side to the pe...

If the angles of a triangle are in the ratio 4 : 1 : 1, then the ratio of the longest side to the perimeter is

A

3:(2+3)\sqrt { 3 } : ( 2 + \sqrt { 3 } )

B

1 : 6

C

1:(2+3)1 : ( 2 + \sqrt { 3 } )

D

2:32 : 3

Answer

3:(2+3)\sqrt { 3 } : ( 2 + \sqrt { 3 } )

Explanation

Solution

4x+x+x=1804 x + x + x = 1806x=1806 x = 180x=30x = 30 ^ { \circ }

sin120a=sin30b=sin30c\frac { \sin 120 ^ { \circ } } { a } = \frac { \sin 30 ^ { \circ } } { b } = \frac { \sin 30 ^ { \circ } } { c }

\therefore a:(a+b+c)=(sin120):(sin120+sin30+sin30)a : ( a + b + c ) = \left( \sin 120 ^ { \circ } \right) : \left( \sin 120 ^ { \circ } + \sin 30 ^ { \circ } + \sin 30 ^ { \circ } \right)

= 32:3+22=3:3+2\frac { \sqrt { 3 } } { 2 } : \frac { \sqrt { 3 } + 2 } { 2 } = \sqrt { 3 } : \sqrt { 3 } + 2.