Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If the angles of a triangle are in the ratio 4 :1 :1 , then the ratio of the longest side to the perimeter is

A

3:(2+3) \sqrt 3 : (2 + \sqrt 3)

B

1:03:02

C

1 : 2 + 3\sqrt 3

D

2:03

Answer

3:(2+3) \sqrt 3 : (2 + \sqrt 3)

Explanation

Solution

Given, ratio of angles are 4 : 1: 1.
4x+x+x=180\Rightarrow 4 x + x + x = 180^\circ
x=30\Rightarrow x = 30^\circ
A=120,B=C=30\therefore \angle A = 120^\circ, \, \angle B = \angle C = 30^\circ
Thus, ratio of longest side to perimeter = aa+b+c \frac{a}{ a + b + c}
Let b = c = x
a2=b2+c22bccosA\Rightarrow a^2 = b^2 + c^2 - 2bc \, cos A
a2=2x22x2cosA=2x2(1cosA)\Rightarrow a^2 = 2x^2 - 2x^2 \, cos \, A = 2x^2 (1 - cos \, A)
a2=4x2sin2A/2\Rightarrow a^2 = 4x^2 \, sin^2 \, A/2
a=2xsinA/2\Rightarrow a = 2x sin A/2
a=2xsin60=3x\Rightarrow a = 2x sin 60^\circ = \sqrt 3 x
Thus, required ratio
= aa+b+c=3xx+x+3x=32+3=3:2+3\frac{a}{ a + b + c} = \frac{ \sqrt 3 x}{ x + x + \sqrt 3 x } = \frac{ \sqrt 3 }{ 2 + \sqrt 3} = \sqrt 3 : 2 + \sqrt 3