Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If the angles of a triangle are in the ratio 3:4:53 : 4 : 5, then the sides are in the ratio

A

3:4:53:4:5

B

2:3:3+12:\sqrt{3}:\sqrt{3}+1

C

2:6+3+1\sqrt{2}:\sqrt{6}+\sqrt{3}+1

D

2:6:3+12:\sqrt{6}:\sqrt{3}+1

Answer

2:6:3+12:\sqrt{6}:\sqrt{3}+1

Explanation

Solution

Let the angles of a triangle are 3θ,4θ,5θ3 \theta , 4\theta , 5 \theta.
We know
A+B+C=180\angle A + \angle B + \angle C = 180^{\circ}
3θ+4θ+5θ=180\Rightarrow \, 3 \theta + 4 \theta + 5\theta = 180^{\circ}
12θ=180\Rightarrow \,12 \theta = 180^{\circ}
θ=15\Rightarrow \,\theta = 15^{\circ}
\therefore Angles are 45,60,7545^{\circ} , 60^{\circ} , 75^{\circ}
Now, sinA=sin45=12\sin \, A = \sin \, 45^{\circ} = \frac{1}{\sqrt{2}}
sinB=sin60=32\sin\,B = \sin \,60^{\circ} = \frac{\sqrt{3}}{2}
sinC=sin75=3+122\sin \, C = \sin \, 75^{\circ} = \frac{\sqrt{3} +1}{ 2 \sqrt{2}}
  a:b:c=sinA:sinB:sinC\therefore \; a : b : c = \sin \, A : \sin \, B : \sin\, C
=12:32:3+122= \frac{1}{\sqrt{2}}: \frac{\sqrt{3}}{2}: \frac{\sqrt{3}+1}{2\sqrt{2}}
=2:6:3+1= 2: \sqrt{6}: \sqrt{3} +1